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Abstract

An outcome in a noncooperative game is said to be self-enforcing, or a strategic

equilibrium, if, whenever it is recommended to the players, no player has an in-

centive to deviate from it. This paper gives an overview of the concepts that have

been proposed as formalizations of this requirement and of the properties and the

applications of these concepts. In particular the paper discusses Nash equilibrium,

together with its main coarsenings (correlated equilibrium, rationalizibility) and

its main refinements (sequential, perfect, proper, persistent and stable equilibria).

There is also an extensive discussion on equilibrium selection.

∗This paper was written in 1994, and no attempt has been made to provide a survey of the devel-

opments since then. The author thanks two anonymous referees and the editors for their comments.



1 Introduction

It has been said that “the basic task of game theory is to tell us what strategies ratio-

nal players will follow and what expectations they can rationally entertain about other

rational players’ strategies” (Harsanyi and Selten (1988, p. 342)). To construct such

a theory of rational behavior for interactive decision situations, game theorists proceed

in an indirect, roundabout way, as suggested in Von Neumann and Morgenstern (1944,

§17.3). The analyst assumes that a satisfactory theory of rational behavior exists and

tries to deduce which outcomes are consistent with such a theory. A fundamental re-

quirement is that the theory should not be self-defeating, i.e. players who know the

theory should have no incentive to deviate from the behavior that the theory recom-

mends. For noncooperative games, i.e. games in which there is no external mechanism

available for the enforcement of agreements or commitments, this requirement implies

that the recommendation has to be self-enforcing. Hence, if the participants act inde-

pendently and if the theory recommends a unique strategy for each player, the profile

of recommendations has to be a Nash equilibrium: The strategy that is assigned to a

player must be optimal for this player when the other players follow the strategies that

are assigned to them. As Nash writes

“By using the principles that a rational prediction should be unique, that

the players should be able to make use of it, and that such knowledge on

the part of each player of what to expect the others to do should not lead

him to act out of conformity with the prediction, one is led to the concept”

(Nash (1950a)).

Hence, a satisfactory normative theory that advises people how to play games neces-

sarily must prescribe a Nash equilibrium in each game. Consequently, one wants to

know whether Nash equilibria exist and what properties they have. These questions are

addressed in the next section of this paper. In that section we also discuss the concept

of rationalizability, which imposes necessary requirements for a satisfactory set-valued

theory of rationality. A second immediate question is whether a satisfactory theory can

prescribe just any Nash equilibrium, i.e. whether all Nash equilibria are self-enforcing.
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Simple examples of extensive form games have shown that the answer to this question is

no: Some equilibria are sustained only by incredible threats and, hence, are not viable

as the expectation that a rational player will carry out an irrational (nonmaximizing)

action is irrational. This observation has stimulated the search for more refined equilib-

rium notions that aim to formalize additional necessary conditions for self-enforcingness.

A major part of this paper is devoted to a survey of the most important of these so-called

refinements of the Nash equilibrium concept. (See Chapter 62 in this Handbook for a

general critique on this refinement program.)

In Section 3 the emphasis is on extensive form solution concepts that aim to capture

the idea of backward induction, i.e. the idea that rational players should be assumed

to be forward-looking and to be motivated to reach their goals in the future, no matter

what happened in the past. The concepts of subgame perfect, sequential, perfect and

proper equilibria that are discussed in Section 3 can all be viewed as formalizations of

this basic idea. Backward induction, however, is only one aspect of self-enforcingness,

and it turns out that it is not sufficient to guarantee the latter. Therefore, in Section

4 we turn to another aspect of self-enforcingness, that of forward induction. We will

discuss stability concepts that aim at formalizing this idea, i.e. that actions taken by

rational actors in the past should be interpreted, whenever possible, as being part of

a grand plan that is globally optimal. As these concepts are related to the notion of

persistent equilibrium, we will have an opportunity to discuss this latter concept as well.

Furthermore, as these ideas are most easily discussed in the normal form of the game, we

take a normal-form perspective in Section 4. As the concepts discussed in this section

are set-valued solution concepts, we will also discuss the extent to which set-valuedness

contradicts the uniqueness of the rational prediction as postulated by Nash in the above

quotation.

The fact that many games have multiple equilibria poses a serious problem for the “the-

ory” rationale of Nash equilibrium discussed above. It seems that, for Nash’s argument

to make sense, the theory has to select a unique equilibrium in each game. However,

how can a rational prediction be unique if the game has multiple equilibria? How can

one rationally select an equilibrium? A general approach to this latter problem has



3

been proposed in Harsanyi and Selten (1988), and Section 5 is devoted to an overview

of that theory as well as a more detailed discussion of some of its main elements, such as

the tracing procedure and the notion of risk-dominance. We also discuss some related

theories of equilibrium selection in that section and show that the various elements of

self-enforcingness that are identified in the various sections may easily be in conflict;

hence, the search for a universal solution concept for non-cooperative games may con-

tinue in the future.

I conclude this introduction with some remarks concerning the (limited) scope of this

chapter. As the Handbook contains an entire chapter on the conceptual foundations of

strategic equilibrium (Chapter 42 of this Handbook), there are few remarks on this topic

in the present chapter. I do not discuss the epistemic conditions needed to justify Nash

equilibrium (see Aumann and Brandenburger (1995)), nor how an equilibrium can be

reached. I’ll focus on the formal definitions and mathematical properties of the concepts.

Throughout, attention will be restricted to finite games, i.e. games in which the number

of players as well as the action set of each of these players is finite. It should also be

stressed that several other completely different rationales have been advanced for Nash

equilibria, and that these are not discussed at all in this chapter. Nash (1950a) already

discussed the “mass-action” interpretation of equilibria, i.e. that equilibria can result

when the game is repeatedly played by myopic players who learn over time. I refer to Fu-

denberg and Levine (1998), and the papers cited therein for a discussion of the contexts

in which learning processes can be expected to converge to Nash equilibria. Maynard

Smith and Price (1973) showed that Nash equilibria can result as outcomes of evolution-

ary processes that wipe out less fit strategies through time. I refer to Hammerstein and

Selten (1994) and Van Damme (1994) for a discussion of the role of Nash equilibrium in

the biological branch of game theory, and to Samuelson (1997), Vega-Redondo (1996)

and Weibull (1995) for more general discussions on evolutionary processes in games.
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2 Nash Equilibria in normal form games

2.1 Generalities

A (finite) game in normal form is a tuple g = (A, u) where A = A1 × ... × AI is a
Cartesian product of finite sets and u = (u1, ..., uI) is an I-tuple of functions ui : A→ R.

The set I = {1, ..., I} is the set of players, Ai is the set of pure strategies of player i
and ui is this player’s payoff function. Such a game is played as follows: Simultaneously

and independently players choose strategies; if the combination a ∈ A results, then each
player i receives ui(a). A mixed strategy of player i is a probability distribution si on Ai

and we write Si for the set of such mixed strategies, hence

Si = {si : Ai → R+,
X
ai∈Ai

si(ai) = 1}. (2.1)

(Generally, if C is any finite set, ∆(C) denotes the set of probability distributions on

C, hence, Si = ∆(Ai)). A mixed strategy may be interpreted as an act of deliberate

randomization of player i or as a probability assessment of some player j 6= i about

how i is going to play. We return to these different interpretations below. We identify

ai ∈ Ai with the mixed strategy that assigns probability 1 to ai. We will write S for the
set of mixed strategy profiles, S = S1 × ... × SI , with s denoting a generic element of
S. Note that when strategies are interpreted as beliefs, taking strategy profiles as the

primitive concept entails the implicit assumption that any two opponents j, k of player i

have a common belief si about which pure action i will take. Alternatively, interpreting

s as a profile of deliberate acts of randomization, the expected payoff to i when s ∈ S
is played, is written ui(s), hence

ui(s) =
X
a∈A

Y
j∈I
sj(aj)ui(a). (2.2)

If s ∈ S and s0i ∈ Si, then s\s0i denotes the strategy profile in which each j 6= i plays
sj while i plays s0i. Occasionally we also write s\s0i = (s−i, s0i), hence, s−i denotes the
strategy vector used by the opponents of player i. We also write S−i =

Q
j 6=i
Sj and
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A−i =
Q
j 6=i
Aj. We say that s0i is a best reply against s in g if

ui(s\s0i) = max
s00i ∈Si

ui(s\s00i ) (2.3)

and the set of all such best replies is denoted as Bi(s). Obviously, Bi(s) only depends
on s−i, hence, we can also view Bi as a correspondence from S−i to Si. If we write Bi(s)
for the set of pure best replies against s, hence Bi(s) = Bi(s)∩Ai, then obviously Bi(s)
is the convex hull of Bi(s). We write B(s) = B1(s)× ... ×BI(s) and refer to B : S → S

as the best-reply correspondence associated with g. The pure best reply correspondence

is denoted by B, hence B = B ∩A.

2.2 Self-enforcing theories of rationality

We now turn to solution concepts that try to capture the idea of a theory of rational

behavior being self-enforcing. We assume that it is common knowledge that players are

rational in the Bayesian sense, i.e. whenever a player faces uncertainty, he constructs

subjective beliefs representing that uncertainty and chooses an action that maximizes his

subjective expected payoffs. We proceed in the indirect way outlined in Von Neumann

and Morgenstern (1944, §17.3). We assume that a self-enforcing theory of rationality

exists and investigate its consequences, i.e. we try to determine the theory from its

necessary implications. The first idea for a solution of the game g is a definite strategy

recommendation for each player, i.e. some a ∈ A. Already in simple examples like

matching pennies, however, no such simple theory can be self-enforcing: There is no

a ∈ A that satisfies a ∈ B(a), hence, there is always at least one player who has an
incentive to deviate from the strategy that the theory recommends for him. Hence, a

general theory of rationality, if one exists, must be more complicated.

Let us now investigate the possibilities for a theory that may recommend more than

one action for each player. Let Ci ⊂ Ai be the nonempty set of actions that the

theory recommends for player i in the game g and assume that the theory, i.e. the set

C = XiCi, is common knowledge among the players. If |Cj| > 1, then player i faces

uncertainty about player j’s action, hence, he will have beliefs sij ∈ Sj about what j
will do. Assuming beliefs associated with different opponents to be independent, we
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can represent player i’s beliefs by a mixed strategy vector si ∈ S−i. (Below we also
discuss the case of correlated beliefs; a referee remarked that he considered that to be

the more relevant case.) The crucial question now is which beliefs can player i rationally

entertain about an opponent j. If the theory C is self-enforcing, then no player j has

an incentive to choose an action that is not recommended, hence, player i should assign

zero possibility to any aj ∈ Aj\Cj. Writing Cj(sj) for the support of sj ∈ Sj,

Cj(sj) = {aj ∈ Aj : sj(aj) > 0}, (2.4)

we can write this requirement as

Cj(s
i
j) ⊂ Cj for all i, j. (2.5)

The remaining question is whether all beliefs sij satisfying (2.5) should be allowed, i.e.

whether i’s beliefs about j can be represented by the set ∆(Cj). One might argue yes:

If the opponents of j had an argument to exclude some aj ∈ Cj, our theory would not
be very convincing; the players would have a better theory available (simply replace

Cj by Cj\{aj}). Hence, let us insist that all beliefs sij satisfying (2.5) are allowed.
Being Bayesian rational, player i will choose a best response against his beliefs si. His

opponents, although not necessarily knowing his beliefs, know that he behaves in this

way, hence, they know that he will choose an action in the set

Bi(C) =
[
{Bi(si) : sij ∈ ∆(Cj) for all j}. (2.6)

Write B(C) = XiBi(C). A necessary requirement for C to be self-enforcing now is that

C ⊂ B(C). (2.7)

For, if there exists some i ∈ I and some ai ∈ Ai with ai ∈ Ci\Bi(C), then the opponents
know that player i will not play ai, but then they should assign probability zero to

ai, contradicting the assumption made just below (2.5). Write 2A for the collection of

subsets of A. Obviously, 2A is a finite, complete lattice and the mapping B : 2A → 2A

(defined by (2.6) and B(∅) = ∅) is monotonic. Hence, it follows from Tarski’s fixed point
theorem (Tarski (1955)), or by direct verification that

(i) there exists a nonempty set C satisfying (2.7),
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(ii) the set of all sets satisfying (2.7) is again a complete lattice, and

(iii) the union of all sets C satisfying (2.7), to be denoted R, is a fixed point of B, i.e.

R = B(R), hence, R is the largest fixed point.

The set R is known as the set of pure rationalizable strategy profiles in g (Bernheim

(1984), Pearce (1984)). It follows by the above arguments that any self-enforcing set-

valued theory of rationality has to be a subset of R and that R itself is such a theory.

The reader can also easily check that R can be found by repeatedly eliminating the

non-best responses from g, hence

if C0 = A and Ct+1 = B(Ct), then R =
\
t

Ct. (2.8)

It is tempting to argue that, for C to be self-enforcing, it is not only necessary that (2.7)

holds, but also that conversely

B(C) ⊂ C; (2.9)

hence, that C actually must be a fixed point of B. The argument would be that, if

(2.9) did not hold and if ai ∈ Bi(C)\Ci, player i could conceivably play ai, hence, his
opponents should assign positive probability to ai. This argument, however, relies on

the assumption that a rational player can play any best response. Since not all best

responses might be equally good (some might be dominated, inadmissible, inferior or

non-robust (terms that are defined below)), it is not completely convincing. We note

that sets with the property (2.9) have been introduced in Basu andWeibull (1991) under

the name of curb sets. (Curb is mnemonic for closed under rational behavior.) The set

of all sets satisfying (2.9) is a complete lattice, i.e. there are minimal nonempty elements

and such minimal elements are fixed points. (Fixed points are called tight curb sets in

Basu and Weibull (1991).) We will encounter this concept again in Section 4.

Above we allowed two different opponents i and k to have different beliefs about player

j, hence sij 6= skj . In such situations one should actually discuss the beliefs that i has

about k’s beliefs. To avoid discussing such higher-order beliefs, let us assume that

players’ beliefs are summarized by one strategy vector s ∈ S, hence we are discussing
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a theory that recommends a unique mixed strategy vector. For such a theory s to be

self-enforcing, we obtain, arguing exactly as above, as a necessary requirement

C(s) ⊂ B(s) (2.10)

where C(s) = XiCi(si), hence, each player believes that each opponent will play a best

response against his beliefs. A condition equivalent to (2.10) is

s ∈ B(s) (2.11)

or

ui(s) = max
s0i∈Si

ui(s\s0i) for all i ∈ I. (2.12)

A strategy vector s satisfying these conditions is called a Nash equilibrium (Nash (1950b,

1951)). A standard application of Kakutani’s fixed point theorem yields:

Theorem 1 (Nash (1950b, 1951)). Every (finite) normal form game has at least one

Nash equilibrium.

We note that Nash (1951) provides an elegant proof that relies directly on Brouwer’s

fixed point theorem. We have already seen that some games only admit equilibria in

mixed strategies. Dresher (1970) has computed that a large game with randomly drawn

payoffs has a pure equilibrium with probability 1−1/e. More recently, Stanford (1995)
has derived a formula for the probability that a randomly selected game has exactly k

pure equilibria. Gul et al. (1993) have shown that, for generic games , if there are k ≥ 1
pure equilibria, then the number of mixed equilibria is at least 2k− 1, a result to which
we return below. An important class of games that admit pure equilibria are potential

games (Monderer and Shapley (1996)). A function P : A→ R is said to be an ordinal

potential of g = hA, ui if for every a ∈ A, i ∈ I and a0i ∈ Ai

ui(a)− ui(a\a0i) > 0 iff P (a)− P (a\a0i) > 0. (2.13)

Hence, if (2.13) holds, then g is ordinally equivalent to a game with common payoffs

and any maximizer of the potential P is a pure equilibrium of g. Consequently, a game

g that has an ordinal potential, has a pure equilibrium. Note that g may have pure
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equilibria that do not maximize P and that there may be mixed equilibria as well. The

function P is said to be an exact potential for g if

ui(a)− ui(a\a0i) = P (a)− P (a\a0i) (2.14)

and Monderer and Shapley (1996) show that such an exact potential, when it exists, is

unique up to an additive constant. Hence, the set of all maximizers of the potential is

a well-defined refinement. Neyman (1997) shows that if the multilinear extension of P

from A to S (as in (2.2)) is concave and continuously differentiable, every equilibrium of

g is pure and is a maximizer of the potential. Another class of games, with important ap-

plications in economics, that admit pure strategy equilibria are games with strategic com-

plementaries (Topkis (1979), Vives (1990), Milgrom and Roberts (1990, 1991), Milgrom

and Shannon (1994)). These are games in which each Ai can be ordered so that it forms

a complete lattice and in which each player’s best-response correspondence is monoton-

ically nondecreasing in the opponents’ strategy combination. The latter is guaranteed if

each ui is supermodular in ai (i.e. ui(ai, a−i)+ui(a0i, a−i) ≤ ui(ai∧a0i, a−i)+ui(ai∨a0i, a−i))
and has increasing differences in (a0i, a−i) (i.e. if a−i ≥ a0−i, then ui(ai, a−i)−ui(ai, a0−i) is
increasing in ai). Topkis (1979) shows that such a game has at least one pure equilibrium

and that there exists a largest and a smallest equilibrium, ā and a respectively. Milgrom

and Roberts (1990, 1991) show that āi (resp. ai) is the largest (resp. smallest) serially

undominated action of each player i, hence, by iterative elimination of strictly dominated

strategies, the game can be reduced to the interval [a, ā]. It follows that, if a game with

strategic complementarities has a unique equilibrium, it is dominance-solvable, hence,

that only the unique equilibrium strategies are rationalizable.

An equilibrium s∗ is called strict if it is the unique best reply against itself, hence

{s∗} = B(s∗). Obviously, strict equilibria are necessarily in pure strategies, conse-

quently they need not exist. An equilibrium s∗ is called quasi-strict if all pure best

replies are chosen with positive probability in s∗, that is, if ai ∈ Bi(s∗), then s∗i (ai) > 0.
Also, quasi-strict equilibria need not exist: Van Damme (1987a, p. 56) gives a 3-player

example. Norde (1999) has shown, however, that quasi-strict equilibria do exist in 2-

person games.
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An axiomatization of the Nash concept, using the notion of consistency, has been pro-

vided in Peleg and Tijs (1996). Given a name g, a strategy profile s and a coalition of

players C, define the reduced game gC,s as the game that results from g if the players

in I\C are committed to play strategies as prescribed by s. A family of games Γ is

called closed if all possible reduced games, of games in Γ, again belong to Γ. A solution

concept on Γ is a map ϕ that associates to each g in Γ a non-empty set of strategy

profiles in g. ϕ is said to satisfy one-person rationality (OPR) if in every one-person

game it selects all payoff maximizing actions. On a closed set of games Γ, ϕ is said to

be consistent (CONS) if, for every g in Γ and s and C: if s ∈ ϕ(g), then sC ∈ ϕ(gC,s),
in other words, if some players are committed to play a solution, the remaining players

find that the solution prescribed to them is a solution for their reduced game. Finally, a

solution concept ϕ on a closed set Γ is said to satisfy converse consistency (COCONS) if,

whenever s is such that sC ∈ ϕ(gC,s) for all C 6= φ, then also s ∈ ϕ(g); in other words,
if the profile is a solution in all reduced games, then it is also a solution in the overall

game. Peleg and Tijs (1996, Theorem 2.12) show that, on any closed family of games,

the Nash equilibrium correspondence is characterized by the axioms OPR, CONS and

COCONS.

Next, let us briefly turn to the assumption that strategy sets are finite. We note, first of

all, that Theorem 1 can be extended to games in which the strategy setsAi are nonempty,

compact subsets of some finite-dimensional Euclidean space and the payoff functions ui

are continuous (Glicksberg (1952)). If, in addition, Ai is convex and ui is quasi-concave

in ai, there exists a pure equilibrium. Existence theorems for discontinuous games

have been given in Dasgupta and Maskin (1986) and Simon and Zame (1990). In the

latter paper it is pointed out that discontinuities typically arise from indeterminacies in

the underlying (economic) problem and that these may be resolved by formulating an

endogenous sharing rule. In this paper, emphasis will be on finite games. All games will

be assumed finite, unless explicitly stated otherwise.

To conclude this subsection, we briefly return to the independence assumption that un-

derlies the above discussion, i.e. the assumption that player i represents his uncertainty

about his opponents by a mixed strategy vector si ∈ S−i. A similar development is pos-
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sible if we allow for correlation. In that case, (2.8) will be replaced by the procedure of

iterative elimination of strictly dominated strategies, and the analogous concept to (2.9)

is that of formations (Harsanyi and Selten (1988), see also Section 5). The concept that

corresponds to the parallel version of (2.12) is that of correlated equilibrium, Aumann

(1974). Formally, if σ is a correlated strategy profile (i.e. σ is a probability distribution

on A, σ ∈ ∆(A)), then σ is a correlated equilibrium if for each player i and each ai ∈ Ai

if σi(ai) > 0 then
X
a−i

σ−i(a−i|ai)ui(a−i, ai) ≥
X
a−i

σ−i(a−i|ai)ui(a−i, a0i) for all a0i ∈ Ai

where σi(ai) denotes the marginal probability of ai and where σ−i(a−i|ai) is the con-
ditional probability of a−i given ai. One interpretation is as follows. Assume that an

impartial mediator (a person or machine through which the players communicate) se-

lects an outcome (a recommendation) a ∈ A according to σ and then informs each

player i privately about this player’s personal recommendation ai. If the above condi-

tions hold, then, assuming that the opponents will always follow their recommendations,

no player has any incentive to deviate from his recommendation, no matter what σ may

recommend to him, hence, the recommendation σ is self-enforcing. Note that correlated

equilibrium allows for private communication between the mediator and each player i:

After hearing his recommendation ai, player i does not necessarily know what action

has been recommended to j, and two players i and k may have different posterior beliefs

about what j will do. Aumann (1974) shows that a correlated equilibrium is nothing

but a Nash equilibrium of an extended game in which the possibilities for communicat-

ing and correlating have been explicitly modeled, so in a certain sense there is nothing

new here, but, of course, working with a reduced form solution concept may have its

advantages. More importantly, Aumann (1987a) argues that correlated beliefs arise

naturally and he shows that, if it is common knowledge that each player is rational (in

the Bayesian sense) and if players analyse the game by using a common prior, then

the resulting distribution over outcomes must be a correlated equilibrium. Obviously,

each Nash equilibrium is a correlated equilibrium, so that existence is guaranteed. An

elementary proof of existence, which uses the fact that the set of correlated equilibria

is a polyhedral set, has been given in Hart and Schmeidler (1989). Moulin and Vial
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(1978) gives an example of a correlated equilibrium with a payoff that is outside the

convex hull of the Nash equilibrium payoffs, thus showing that players may benefit from

communication with the mediator not being public. Myerson (1986) shows that, in ex-

tensive games, the timing of communication becomes of utmost importance. For more

extensive discussion on communication and correlation in games, we refer to Myerson’s

chapter 24 in this Handbook.

2.3 Structure, regularity and generic finiteness

For a game g we write E(g) for the set of its Nash equilibria. It follows from (2.10) that

E(g) can be described by a finite number of polynomial inequalities, hence, E(g) is a

semi-algebraic set. Consequently, E(g) has a finite triangulation, hence

Theorem 2 (Kohlberg and Mertens (1986, Proposition 1)). The set of Nash equilibria

of a game consists of finitely many connected components.

Two equilibria s, s0 of g are said to be interchangeable if, for each i ∈ I, also s\s0i and s0\si
are equilibria of g. Nash (1951) defined a subsolution as a maximal set of interchangeable

equilibria and he called a game solvable if all its equilibria are interchangeable. Nash

proved that each subsolution is a closed and convex set, in fact, that it is a product of

polyhedral sets. Subsolutions need not be disjoint and a game may have uncountably

many subsolutions (Chin et al. (1974)). In the 2-person case, however, there are only

finitely many subsolutions (Jansen (1981)). A special class of solvable games is the

2-person zero-sum games, i.e. u1+ u2 = 0. For such games, all equilibria yield the same

payoff, the so-called value of the game, and a strategy is an equilibrium strategy if and

only if it is a minmax strategy. The reader is referred to chapter 20 in this Handbook

for a more extensive discussion of zero-sum 2-person games.

Let us now take a global perspective. Write Γ = ΓA for the set of all normal form

games g with strategy space A = A1 × ... × AI . Obviously, Γ = RI×A, a finite-

dimensional linear space. Write E for the graph of the equilibrium correspondence,

hence, E = {(g, s) ∈ Γ × S : s ∈ E(g)}. Kohlberg and Mertens have shown that this
graph E is itself a relatively simple object as it is homeomorphic to the space of games Γ.
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Kohlberg and Mertens show that the graph E (when compactified by adding a point∞)
looks like a deformation of a rubber sphere around the (similarly compactified) sphere

of games. Hence, the graph is “simple”, it just has folds, there are no holes, gaps or

knots. Formally

Theorem 3 (Kohlberg and Mertens (1986, Theorem 1)). Let π be the projection from E

to Γ. Then there exists a homeomorphism ϕ from Γ to E such that π ◦ϕ is homotopic to
the identity on Γ under a homotopy that extends from Γ to its one-point compactification

Γ̄.

Kohlberg and Mertens use Theorem 3 to show that each game has at least one compo-

nent of equilibria that does not vanish entirely when the payoffs of the game are slightly

perturbed, a result that we will further discuss in Section 4. We now move on to show

that the graph E is really simple as generically (i.e. except on a closed set of games

with measure zero) the equilibrium correspondence consists of a finite (odd) number of

differentiable functions. We proceed in the spirit of Harsanyi (1973a), but follow the

more elegant elaboration of Ritzberger (1994). At the end of the subsection, we briefly

discuss some related recent work that provides a more general perspective.

Obviously, if s is a Nash equilibrium of g, then s is a solution to the following system

of equations

si(ai)[ui(s\ai)− ui(s)] = 0 all i ∈ I, ai ∈ Ai. (2.15)

(The system (2.15) also admits solutions that are not equilibria - for example, any pure

strategy vector is a solution - but this fact need not bother us at present.) For each

player i, one equation in (2.15) is redundant; it is automatically satisfied if the others

are. If we select, for each player i, one strategy āi ∈ Ai and delete the corresponding
equation, we are left with m =

P
i |Ai| − I equations. Similarly we can delete the

variable si(āi) for each i as it can be recovered from the constraint that probabilities

add up to one. Hence, (2.15) reduces to a system of m equations with m unknowns.
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Taking each pair (i, a) with i ∈ I and a ∈ Ai\{āi} as a coordinate, we can view S as a
subset of Rm and the left-hand side of (2.15) as a mapping from S to Rm, hence

fiai(s) = si(ai)[ui(s\ai)− ui(s)] i ∈ I, ai ∈ Ai\{āi}. (2.16)

Write ∂f(s) for the Jacobian matrix of partial derivates of f evaluated at s and |∂f(s)|
for its determinant. We say that s is a regular equilibrium of g if |∂f(s)| 6= 0, hence,

if the Jacobian is nonsingular. The reader easily checks that for all i ∈ I and ai ∈ Ai,
if si(ai) = 0, then ui(s\ai) − ui(s) is an eigenvalue of ∂f(s), hence, it follows that a
regular equilibrium is necessarily quasi-strict. Furthermore, if s is a strict equilibrium,

the above observation identifiesm (hence, all) eigenvalues, so that any strict equilibrium

is regular. A straightforward application of the implicit function theorem yields that, if

s∗ is a regular equilibrium of a game g∗, there exist neighborhoods U of g∗ in Γ and V of

s∗ in S and a continuous map s : U → V with s(g∗) = s∗ and {s(g)} = E(g)∩ V for all
g ∈ U . Hence, if s∗ is a regular equilibrium of g∗, then around (g∗, s∗) the equilibrium

graph E looks like a continuous curve. By using Sard’s theorem (in the manner initiated

in Debreu (1970)) Harsanyi showed that for almost all normal form games all equilibria

are regular. Formally, the proof proceeds by constructing a subspace Γ̃ of Γ and a

polynomial map ϕ : Γ̃ × S → Γ with the following properties (where g̃ denotes the

projection of g in Γ̃):

1. ϕ(g̃, s) = g if s ∈ E(g)

2. |∂ϕ(g̃, s)| = 0 if and only if |∂f(s)| = 0.

Hence, if s is an irregular equilibrium of g, then g is a critical value of ϕ and Sard’s

theorem guarantees that the set of such critical values has measure zero. (For further

details we refer to Harsanyi (1973a) and Van Damme (1987a).) We summarize the above

discussion in the following Theorem.

Theorem 4 (Harsanyi (1973a)). Almost all normal form games are regular, that is,

they have only regular equilibria. Around a regular game, the equilibrium correspondence

consists of a finite number of continuous functions. Any strict equilibrium is regular and

any regular equilibrium is quasi-strict.
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Note that Theorem 4may be of limited value for games given originally in extensive form.

Any such nontrivial extensive form gives rise to a strategic form that is not in general

position, hence, that is not regular. We will return to generic properties associated with

extensive form games in Section 4. We will now show that the finiteness mentioned in

Theorem 4 can be strengthened to oddness. Again we trace the footsteps of Harsanyi

(1973a) with minor modifications as suggested by Ritzberger (1994), a paper that in

turn builds on Dierker (1972).

Consider a regular game g and add to it a logarithmic penalty term so that the payoff

to i resulting from s becomes

uεi (s) = ui(s) + ε
X
ai∈Ai

lnsi(ai) (i ∈ I, s ∈ S). (2.17)

Obviously, an equilibrium of this game has to be in completely mixed strategies. (Since

the payoff function is not multilinear, (2.10) and (2.12) are no longer equivalent; by an

equilibrium we mean a strategy vector satisfying (2.12) with ui replaced by uεi . It follows

easily from Kakutani’s theorem that an equilibrium exists.) Hence, the necessary and

sufficient conditions for equilibrium are given by the first order conditions:

fεiai(s) = fiai(s) + ε(1− |Ai|si(ai)) = 0 i ∈ I, ai ∈ Ai\{āi}. (2.18)

Because of the regularity of g, g has finitely many equilibria, say s1, ..., sK . The im-

plicit function theorem tells us that for small ε, system (2.18) has at least K solutions

{sk(ε)}Kk=1 with sk(ε) → sk as ε → 0. In fact there must be exactly K solutions for

small ε: Because of regularity there cannot be two solution curves converging to the

same sk, and if a solution curve remained bounded away from the set {s1, ..., sK}, then
it would have a cluster point and this would be an equilibrium of g. However, the latter

is impossible since we have assumed g to be regular. Hence, if ε is small, fε has exactly

as many zero’s as g has equilibria. An application of the Poincaré-Hopf Theorem for

manifolds with boundary shows that each f ε has an odd number of zero’s, hence, g has

an odd number of equilibria. (To apply the Poincaré-Hopf Theorem, take a smooth
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approximation to the boundary of S, for example,

S(δ) = {s ∈ S;
Y
ai∈Ai

si(ai) ≥ δ all i}. (2.19)

Then the Euler characteristic of S(δ) is equal to 1 and, for fixed ε, if δ is sufficiently

small, f ε points outward at the boundary of S(δ).) To summarize, we have shown:

Theorem 5 (Harsanyi (1973a), Wilson (1971), Rosenmüller (1971)). Generic strate-

gic form games have an odd number of equilibria.

Ritzberger notes that actually we can say a little more. Recall that the index of a zero

s of f is defined as the sign of the determinant |∂f(s)|. By the Poincaré-Hopf Theorem
and the continuity of the determinantX

s∈E(g)
sgn|∂f(s)| = 1. (2.20)

It is easily seen that the index of a pure equilibrium is +1. Hence, if there are l pure

equilibria, there must be at least l − 1 equilibria with index −1, and these must be
mixed. This latter result was also established in Gul et al. (1993). In this paper, the

authors construct a map g from the space of mixed strategies S into itself such that s

is a fixed point of g if and only if s is a Nash equilibrium. They define an equilibrium

s to be regular if it is quasi-strict and if det(I − g0(s)) 6= 0. Using the result that the
sum of the Lefschetz indices of the fixed points of a Lefschetz function is +1 and the

observation that a pure equilibrium has index +1, they obtain their result that a regular

game that has k pure equilibria must have at least k − 1 mixed ones. The authors also
show that almost all games have only regular equilibria.

Recall that already Nash (1951) worked with a function f of which the fixed points

correspond with the equilibria of the game. (See also the remark immediately below

Theorem 1.) Nash’s function is, however, different from that of Gul et al. (1993), and

different from the function that we worked with in (2.15). This raises the question

of whether the choice of the function matters. In recent work, Govindan and Wilson

(2000) show that the anwer is no. These authors define a Nash map as a continuous

function f : Γ × S → S that has the property that for each fixed game g the induced
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map fg : S → S has as its fixed points the set of Nash equilibria of g. Given such a

Nash map, the index ind(C, f) of a component C of Nash equilibria of g is defined in

the usual way (see Dold (1972)). The main result of Govindan and Wilson (2000) states

that for any two Nash maps f , f 0 and any component C we have ind(C, f) = ind(C, f 0).

Furthermore, if the degree of a component, deg(C), is defined as the local degree of

the projection map from the graph E of the equilibrium correspondence to the space of

games (cf. Theorem 3), then ind(C, f) = deg(C) (see Govindan and Wilson (1997)).

2.4 Computation of equilibria: The 2-person case

The papers of Rosenmüller and Wilson mentioned in the previous theorem proved the

generic oddness of the number of equilibria of a strategic form game in a completely

different way than we did. These papers generalized the Lemke and Howson (1964)

algorithm for the computation of equilibria in bimatrix games to n-person games. Lemke

and Howson had already established the generic oddness of the number of equilibria for

bimatrix games and the only difference between the 2-person case and the n-person case

is that in the latter the pivotal steps involve nonlinear computations rather than the

linear ones in the 2-person case. In this subsection we restrict ourselves to 2-person

games and briefly outline the Lemke/Howson algorithm, thereby establishing another

proof for Theorem 5 in the 2-person case. The discussion will be based upon Shapley

(1974).

Let g = hA, ui be a 2-person game. The nondegeneracy condition that we will use to
guarantee that the game is regular is

|C(s)| ≥ |B(s)| for all s ∈ S (2.21)

This condition is clearly satisfied for almost all bimatrix games and indeed ensures that

all equilibria are regular. We write L(si) for the set of “labels” associated with si ∈ Si

L(si) = Ai\Ci(si) ∪Bj(si). (2.22)

If mi = |Ai|, then, by (2.21), the number of labels if si is at most mi. We will be

interested in the set Ni of those si that have exactly mi labels. This set is finite: the
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regularity condition (2.21) guarantees that for each set L ⊂ A1 ∪ A2 with |L| = mi

there is at most one si ∈ Si such that L(si) = L. Hence, the labelling identifies the

strategy, so that the word label is appropriate. If si ∈ Ni\Ai, then for each ai ∈ L(si)
there exists (because of (2.21)) a unique ray in Si emanating at si of points s0i with

L(s0i) = L(si)\{ai}, and moving in the direction of this ray we find a new point s00i ∈ Ni
after a finite distance. A similar remark applies to si ∈ Ni∩Ai, except that in that case
we cannot eliminate the label corresponding to Bj(si). Consequently, we can construct

a graph Ti with node set Ni that has mi edges (of points s0i with |L(s0i)| = mi − 1)
originating from each node in Ni\Ai and that has mi − 1 edges originating from each

node in Ni ∩Ai. We say that two nodes are adjacent if they are connected by an edge,
hence, if they differ by one label.

Now consider the “product graph” T in the product set S: the set of nodes isN = N1×N2
and two nodes s, s0 are adjacent if for some i si = s0i while for j 6= i we have that sj
and s0j are adjacent in Nj. For s ∈ S, write L(s) = L(s1) ∪ L(s2). Obviously, we have
that L(s) = A1 ∪ A2 if and only if s is a Nash equilibrium of g. Hence, equilibria

correspond to fully labelled strategy vectors and the set of such vectors will be denoted

by E. The regularity assumption (2.21) implies that E ⊂ N , hence, E is a finite set.

For a ∈ A1 ∪ A2 write Na for the set of s ∈ N that miss at most the label a. The

observations made above imply the following fundamental lemma:

Lemma 1:

(i) If s ∈ E, si = a, then s is adjacent to no node in Na

(ii) If s ∈ E, si 6= a, then s is adjacent to exactly one node in Na

(iii) If s ∈ Na\E, si = a, then s is adjacent to exactly one node in Na

(iv) If s ∈ Na\E, si 6= a, then s is adjacent to exactly two nodes in Na

Proof :

(i) In this case s is a pure and strict equilibrium, hence, any move away from s

eliminates labels other than a.
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(ii) If s is a pure equilibrium, then the only move that eliminates only the label a is

to increase the probability of a in Ti. If si is mixed, then (2.21) implies that sj is

mixed as well. We either have si(a) = 0 or a ∈ Bi(sj). In the first case the only
move that eliminates only label a is one in Ti (increase the probability of a), in

the second case it is the unique move in Tj away from the region where a is a best

response.

(iii) The only possibility that this case allows is s = (a, b) with b being the unique

best response to a. Hence, if a0 is the unique best response against b, the a0 is the

unique action that is labelled twice. The only possible move to an adjacent point

in Na is to increase the probability of a0 in Ti.

(iv) Let b be the unique action that is labelled by both s1 and s2, hence {b} = L(s1)∩
L(s2). Note that si is mixed. If sj is mixed as well, then we can either drop b from

L(s1) in Ti or drop b from L(s2) in Tj. This yields two different possibilities and

these are the only ones. If sj is pure, then b ∈ Ai and the same argument applies.
¤

The lemma now implies that an equilibrium can be found by tracing a path of almost

completely labelled strategy vectors in Na, i.e. vectors that miss at most a. Start at the

pure strategy pair (a, b) where b is the best response to a. If a is also the best response

to b, we are done. If not, then we are in case (iii) of the lemma and we can follow a

unique edge in Na starting at (a, b). The next node s we encounter is one satisfying

either condition (ii) of the lemma (and then we are done) or condition (iv). In the latter

case, there are two edges of Na at s. We came in via one route, hence there is only one

way to continue. Proceeding in similar fashion, we encounter distinct nodes of type (iv)

until we finally hit upon a node of type (ii). The latter must eventually happen since

Na has finitely many nodes.

The lemma also implies that the number of equilibria is odd. Consider an equilibrium s0

different from the one found by the above construction. Condition (ii) from the lemma

guarantees that this equilibrium is connected to exactly one node in Na as in condition



20

(iv) of the lemma. We can now repeat the above constructive process until we end

up at yet another equilibrium s00. Hence, all equilibria, except the distinguished one

constructed above, appear in pairs: The total number of equilibria is odd.

Note that the algorithm described in this subsection offers no guarantee to find more

than one equilibrium, let alone to find all equilibria. Shapley (1981) discusses a way

of transforming the paths so as to get access to some of the previously inaccessible

equilibria.

2.5 Purification of mixed strategy equilibria

In Section 2.1 we noted that mixed strategies can be interpreted both as acts of deliberate

randomization as well as representations of players’ beliefs. The former interpretation

seems intuitively somewhat problematic; it may be hard to accept the idea of making

an important decision on the basis of a toss of a coin. Mixed strategy equilibria also

seem unstable: To optimize his payoff a player does not need to randomize; any pure

strategy in the support is equally as good as the equilibrium strategy itself. The only

reason a player randomizes is to keep the other players in equilibrium, but why would a

player want to do this? Hence, equilibria in mixed strategies seem difficult to interpret

(Aumann and Maschler (1972), Rubinstein (1991)).

Harsanyi (1973a) was the first to discuss the more convincing alternative interpretation

of a mixed strategy of player i as a representation of the ignorance of the opponents as

to what player i is actually going to do. Even though player i may follow a deterministic

rule, the opponents may not be able to predict i’s actions exactly, since i’s decision might

depend on information that the opponents can only assess probabilistically. Harsanyi

argues that each player always has a tiny bit of private information about his own payoffs

and he modifies the game accordingly. Such a slightly perturbed game admits equilibria

in pure strategies and the (regular) mixed equilibria of the original unperturbed game

may be interpreted as the limiting beliefs associated with these pure equilibria of the

perturbed games. In this subsection we give Harsanyi’s construction and state and

illustrate his main result.

Let g = hA, ui be an I-person normal form game and, for each i ∈ I, let Xi be a random
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vector taking values in RA. Let X = (Xi)i∈I and assume that different components of

X are stochastically independent. Let Fi be the distribution function of Xi and assume

that Fi admits a continuously differentiable density fi that is strictly positive on some

ball Θi around zero in RA (and 0 outside that ball). For ε > 0, write gε(X) for the game

described by the following rules:

(i) nature draws x from X

(ii) each player i is informed about his component xi

(iii) simultaneously and independently each player i selects an action ai ∈ Ai

(iv) each player i receives the payoff ui(a) + εxi(a), where a is the action combination

resulting from (iii).

Note that, if ε is small, a player’s payoff is close to the payoff from g with probability

approximately 1. What a player will do in gε(X) depends on his observation and on his

beliefs about what the opponents will do. Note that these beliefs are independent of his

observation and that, no matter what the beliefs might be, the player will be indifferent

between two pure actions with probability zero. Hence, we may assume that each player

i restricts himself to a pure strategy in gε(X), i.e. to a map σi : Θi → Ai. (If a player is

indifferent, he himself does not care what he does and his opponents do not care since

they attach probability zero to this event.) Given a strategy vector σε in gε(X) and

ai ∈ Ai write Θaii (σε) for the set of observations where σεi prescribes to play ai. If a
player j 6= i believes i is playing σεi , then the probability that j assigns to i choosing ai
is

sεi (ai) =

Z
Θ
ai
i (σ

ε)

dFi. (2.23)

The mixed strategy vector sε ∈ S determined by (2.23) will be called the vector of

beliefs associated with the strategy vector σε. Note that all opponents j of i have the

same beliefs about player i since they base themselves on the same information. The

strategy combination σε is an equilibrium of gε(X) if, for each player i, it assigns an

optimal action at each observation, hence

if xi ∈ Θaii (σε), then ai ∈ argmax[ui(sε\ai) + εxi(sε\ai)]. (2.24)
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We can now state Harsanyi’s theorem

Theorem 6 (Harsanyi (1973b)). Let g be a regular normal form game and let the

equilibria be s1, ..., sK. Then, for sufficiently small ε, the game gε(X) has exactly K

equilibrium belief vectors, say s1(ε)..., sK(ε), and these are such that lim
ε→0
sk(ε) = sk for

all k. Furthermore, the equilibrium σk(ε) underlying the belief vector sk(ε) can be taken

to be pure.

We will illustrate this theorem by means of a simple example, the game from Fig. 1.

(The “t” stands for “tough”, the “w” for “weak”, the game is a variation of the battle

of the sexes.) For analytical simplicity, we will perturb only one payoff for each player,

as indicated in the diagram

w2 t2

t1 1, u2 + εx2 0, 0

w1 u1 + εx1, u2 + εx2 u1 + εx1, 1

Figure 1: A perturbed game gε(x1, x2) (0 < u1, u2 < 1)

The unperturbed game g (ε = 0 in Figure 1) has 3 equilibria, (t1, w2), (w1, t2) and a

mixed equilibrium in which each player i chooses ti with probability si = 1−uj (i 6= j).
The pure equilibria are strict, hence, it is easily seen that they can be approximated by

equilibrium beliefs of the perturbed games in which the players have private information:

If ε is small, then (ti, wj) is a strict equilibrium of gε(x1, x2) for a set of (x1, x2)-values

with large probability. Let us show how the mixed equilibrium of g can be approximated.

If player i assigns probability sεj to j playing tj, then he prefers to play ti if and only if

1− sεj > ui + εxi. (2.25)

Writing Fi for the distribution of Xi we have that the probability that j assigns to the

event (2.25) is Fi((sεj − ui)/ε), hence, to have an equilibrium of the perturbed game we
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must have

sεi = Fi((1− sεj − ui)/ε) i, j ∈ {1, 2}, i 6= j. (2.26)

Writing Gi for the inverse of Fi, we obtain the equivalent conditions

1− sεj − ui − εGi(sεi ) = 0 i, j ∈ {1, 2}, i 6= j. (2.27)

For ε = 0, the system of equations has the regular, completely mixed equilibrium of g

as a solution, hence, the implicit function theorem implies that, for ε sufficiently small,

there is exactly one solution (sε1, s
ε
2) of (2.27) with s

ε
i → 1− uj as ε→ 0. These beliefs

are the ones mentioned in Theorem 6. A corresponding pure equilibrium strategy for

each player i is: play wi if xi ≤ (1− sεj − ui)/ε and play bi otherwise.
For more results on purification of mixed strategy equilibria, we refer to Aumann et al.

(1983), Milgrom and Weber (1985) and Radner and Rosenthal (1982). These papers

consider the case where the private signals that players receive do not influence the

payoffs and they address the question of how much randomness there should be in the

environment in order to enable purification. In Section 5 we will show that completely

different results are obtained if players make common noisy observations on the entire

game: In this case even some strict equilibria cannot be approximated.

3 Backward induction equilibria in extensive form

games

Selten (1965) pointed out that, in extensive form games, not every Nash equilibrium

can be considered self-enforcing. Selten’s basic example is similar to the game g from

Figure 2, which has (l1, l2) and (r1, r2) as its two pure Nash equilibria. The equilibrium

(l1, l2) is not self-enforcing. Since the game is noncooperative, player 2 has no ability to

commit himself to l2. If he is actually called upon to move, player 2 strictly prefers to

play r2, hence, being rational, he will indeed play r2 in that case. Player 1 can foresee

that player 2 will deviate to r2 if he himself deviates to r1, hence, it is in the interest

of player 1 to deviate from an agreement on (l1, l2). Only an agreement on (r1, r2) is

self-enforcing.



24

@
@

@
@

@

¡
¡

¡
¡

¡
@

@
@

@
@

¡
¡

¡
¡

¡

1

r1l1

(1, 3)

2

r2l2

(3, 1)(0, 0)

Figure 2: A Nash equilibrium that is not self-enforcing

Being a Nash equilibrium, (l1, l2) has the property that no player has an incentive to

deviate from it if he expects the opponent to stick to this strategy pair. The example,

however, shows that player 1’s expectation that player 2 will abide by an agreement on

(l1, l2) is nonsensical. For a self-enforcing agreement we should not only require that no

player can profitably deviate if nobody else deviates, we should also require that the

expectation that nobody deviates be rational. In this section we discuss several solution

concepts, refinements of Nash equilibrium, that have been proposed as formalizations

of this requirement. In particular, attention is focussed on sequential equilibria (Kreps

and Wilson (1982a)) and on perfect equilibria (Selten (1975)). Along the way we will

also discuss Myerson’s (1978) notion of proper equilibrium. First, however, we introduce

some basic concepts and notation related to extensive form games.

3.1 Extensive form and related normal forms

Throughout, attention will be confined to finite extensive form games with perfect recall.

Such a game g is given by

(i) a collection I of players,

(ii) a game tree K specifying the physical order of play,
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(iii) for each player i a collection Hi of information sets specifying the information a

player has when he has to move. Hence Hi is a partition of the set of decision

points of player i in the game and if two nodes x and y are in the same element h

of the partition Hi, then i cannot distinguish between x and y,

(iv) for each information set h, a specification of the set of choices Ch that are feasible

at that set,

(v) a specification of the probabilities associated with chance moves, and

(vi) for each end point z of the tree and each player i a payoff ui(z) that player i

receives when z is reached.

For formal definitions, we refer to Selten (1975), Kreps and Wilson (1982a) or Hart

(1992). For an extensive form game g we write g = (Γ, u) where Γ specifies the structural

characteristics of the game and u gives the payoffs. Γ is called a game form. The set of

all games with game form Γ can be identified with an |I| × |Z| Euclidean space, where
I is the player set and Z the set of end points. The assumption of perfect recall, saying

that no player ever forgets what he has known or what he has done, implies that each

Hi is a partially ordered set.

A local strategy sih of player i at h ∈ Hi is a probability distribution on the set Ch of
choices at this information set h. It is interpreted as a plan for what i will do at h or

as the beliefs of the opponents of what i will do at that information set. Note that the

latter interpretation assumes that different players hold the same beliefs about what

i will do at h and that these beliefs do not change throughout the game. A behavior

strategy si of player i assigns a local strategy sih to each h ∈ Hi. We write Sih for the
set of local strategies at h and Si for the set of all behavior strategies of player i. A

behavior strategy si is called pure if it associates a pure action at each h ∈ Hi and the
set of all these strategies is denoted Ai.

A behavior strategy combination s = (s1, ... sI) specifies a behavior strategy for each

player i. The probability distribution ps that s induces on Z is called the outcome of

s. Two strategies s0i and s
00
i of player i are said to be realization equivalent if p

s\s0i =

ps\s
00
i for each strategy combination s, i.e. if they induce the same outcomes against
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any strategy profile of the opponents. Player i’s expected payoff associated with s is

ui(s) =
P

z p
s(z)ui(z). If x is a node of the game tree, then psx denotes the probability

distribution that results on Z when the game is started at x with strategies s and uix(s)

denotes the associated expectation of ui. If every information set h of g that contains

a node y after x actually has all its nodes after x, then that part of the tree of g that

comes after x is a game of its own. It is called the subgame of g starting at x.

The normal form associated with g is the normal form game hA,ui which has the same
player set, the same sets of pure strategies and the same payoff functions as g has. A

mixed strategy from the normal form induces a behavioral strategy in the extensive form

and Kuhn’s (1953) theorem for games with perfect recall guarantees that, conversely, for

every mixed strategy, there exists a behavior strategy that is realization equivalent to it.

(See Hart (1992) for more details.) Note that the normal form frequently contains many

realization equivalent pure strategies for each player: If the information set h ∈ Hi is
excluded by player i’s own strategy, then it is “irrelevant” what the strategy prescribes

at h. The game that results from the normal form if we replace each equivalence class (of

realization equivalent) pure strategies by a representative from that class, will be called

the semi-reduced normal form. Working with the semi-reduced normal form implies that

we do not specify playerj’s beliefs about what i will do at an information set h ∈ Hi
that is excluded by i’s own strategy.

The agent normal form associated with g is the normal form game hC, ui that has a
player ih associated with every information set h of each player i in g. This player

ih has the set Ch of feasible actions as his pure strategy set and his payoff function is

the payoff of the player i to whom he belongs. Hence, if cih ∈ Ch for each h ∈ ∪iHi,
then s = (cih)ih is a (pure) strategy combination in g and we define uih(s) = ui(s) for

h ∈ Hi. The agent normal form was first introduced in Selten (1975). It provides a

local perspective, it decentralizes the strategy decision of player i into a number of local

decisions. When planning his decision for h, the player does not necessarily assume that

he is in full control of the decision at an information set h0 ∈ Hi that comes after h,
but he is sure that the player/agent making the decision at that stage has the same

objectives as he has. Hence, a player is replaced by a team of identically motivated
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agents.

Note that a pure strategy combination is a Nash equilibrium of the agent normal form

if and only if it is a Nash equilibrium of the normal form. Because of perfect recall, a

similar remark applies to equilibria that involve randomization, provided that we iden-

tify strategies that are realization equivalent. Hence, we may define a Nash equilibrium

of the extensive form as a Nash equilibrium of the associated (agent) normal form and

obtain (2.12) as the defining equations for such an equilibrium. It follows from Theorem

1 that each extensive form game has at least one Nash equilibrium. Theorems 2 and

3 give information about the structure of the set of Nash equilibria of extensive form

games. Kreps and Wilson proved a partial generalization of Theorem 4:

Theorem 7 (Kreps and Wilson (1982a)). Let Γ be any game form. Then, for almost

all u, the extensive form game hΓ, ui has finitely many Nash equilibrium outcomes (i.e.

the set {ps(u) : s is a Nash equilibrium of hΓ, ui} is finite) and these outcomes depend
continuously on u.

Note that in this theorem, finiteness cannot be strengthened to oddness: Any extensive

form game with the same structure as in Figure 2 and with payoffs close to those in

Figure 2 has l1 and (r1, r2) as Nash equilibrium outcomes. Hence, Theorem 5 does

not hold for extensive form games. Little is known about whether Theorem 6 can be

extended to classes of extensive form games. However, see Fudenberg et al. (1988) for

results concerning various forms of payoff uncertainty in extensive form games.

Before moving on to discuss some refinements in the next subsections, we briefly mention

some coarsenings of the Nash concept that have been proposed for extensive form games.

Pearce (1984), Battigalli (1997) and Börgers (1991) propose concepts of extensive form

rationalizability. Some of these also aim to capture some aspects of forward induction

(see Section 4). Fudenberg and Levine (1993ab) and Rubinstein and Wolinsky (1994)

introduce, respectively, the concepts of “self-confirming equilibria” and of “rationaliz-

able conjectural equilibria” that impose restrictions that are in between those of Nash

equilibrium and rationalizability. These concepts require players to hold identical and
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correct beliefs about actions taken at information sets that are on the equilibrium path,

but allow players to have different beliefs about opponents’ play at information sets that

are not reached. Hence, in such an equilibrium, if players only observe outcomes, no

player will observe play that contradicts his predictions.

3.2 Subgame perfect equilibria

The Nash equilibrium condition (2.12) requires that each player’s strategy be optimal

from the ex ante point of view. Ex ante optimality implies that the strategy is also

ex post optimal at each information set that is reached with positive probability in

equilibrium, but, as the game of Figure 2 illustrates, such ex post optimality need not

hold at the unreached information sets. The example suggests imposing ex post opti-

mality as a necessary requirement for self-enforcingness but, of course, this requirement

is meaningful only when conditional expected payoffs are well-defined, i.e. when the

information set is a singleton. In particular, the suggestion is feasible for games with

perfect information, i.e. games in which all information sets are singletons, and in this

case one may require as a condition for s∗ to be self-enforcing that it satisfies

uih(s
∗) ≥ uih(s∗\si) for all i, all si ∈ Si all h ∈ Hi. (3.1)

Condition (3.1) states that at no decision point h can a player gain by deviating from s∗

if after h no other player deviates from s∗. Obviously, equilibria satisfying (3.1) can be

found by rolling back the game tree in a dynamic programming fashion, a procedure al-

ready employed in Zermelo (1912). It is, however, also worthwhile to remark that already

in Von Neumann and Morgenstern (1944) it was argued that this backward induction

procedure was not necessarily justified as it incorporates a very strong assumption of

“persistent” rationality. Recently, Hart (1999) has shown that the procedure may be

justified in an evolutionary setting. Adopting Zermelo’s procedure one sees that, for

perfect information games, there exists at least one Nash equilibrium satisfying (3.1)

and that, for generic perfect information games, (3.1) selects exactly one equilibrium.

Furthermore, in the latter case, the outcome of this equilibrium is the unique outcome

that survives iterated elimination of weakly dominated strategies in the normal form
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of the game. (Each elimination order leaves at least this outcome and there exists a

sequence of eliminations that leaves nothing but this outcome, cf. Moulin (1979).)

Selten (1978) was the first paper to show that the solution determined by (3.1) may be

hard to accept as a guide to practical behavior. (Of course, it was already known for a

long time that in some games, such as chess, playing as (3.1) dictates may be infeasible

since the solution s∗ cannot be computed.) Selten considered the finite repetition of

the game from Figure 2, with one player 2 playing the game against a sequence of

different players in each round and with players always being perfectly informed about

the outcomes in previous rounds. In the story that Selten associates with this game,

player 2 is the owner of a chain store who is threatened by entry in each of finitely many

towns. When entry takes place (r1 is chosen), the chain store owner either acquiesces

(chooses r2) or fights entry (chooses l2). The backward induction solution has players

play (r1, r2) in each round, but intuitively, we expect player 2 to behave aggressively

(choose l2) at the beginning of the game with the aim of inducing later entrants to stay

out. The chain store paradox is the paradox that even people who accept the logical

validity of the backward induction reasoning somehow remain unconvinced by it and

do not act in the manner that it prescribes, but rather act according to the intuitive

solution. Hence, there is an inconsistency between plausible human behavior and game-

theoretic reasoning. Selten’s conclusion from the paradox is that a theory of perfect

rationality may be of limited relevance for actual human behavior and he proposes a

theory of limited rationality to resolve the paradox. Other researchers have argued

that the paradox may be caused more by the inadequacy of the model than by the

solution concept that is applied to it. Our intuition for the chain store game may derive

from a richer game in which the deterrence equilibrium indeed is a rational solution.

Such richer models have been constructed in Kreps and Wilson (1982b), Milgrom and

Roberts (1982) and Aumann (1992). These papers change the game by allowing a tiny

probability that player 2 may actually find it optimal to fight entry, which has the

consequence that, when the game still lasts for a long time, player 2 will always play as

if it is optimal to fight entry which forces player 1 to stay out.

The cause of the chain store paradox is the assumption of persistent rationality that
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underlies (3.1), i.e. players are forced to believe that even at information sets h that

can be reached only by many deviations from s∗, behavior will be in accordance with

s∗. This assumption that forces a player to believe that an opponent is rational even

after he has seen the opponent make irrational moves has been extensively discussed

and criticized in the literature, with many contributions being critical (see, for exam-

ple, Basu (1988, 1990), Ben Porath (1993), Binmore (1987), Reny (1992ab, 1993) and

Rosenthal (1981)). Binmore argues that human rationality may differ in systematic

ways from the perfect rationality that game theory assumes, and he urges theorists to

build richer models that incorporate explicit human thinking processes and that take

these systematic deviations into account. Reny argues that (3.1) assumes that there

is common knowledge of rationality throughout the game, but that this assumption is

self-contradicting: Once a player has “shown” that he is irrational (for example, by

playing a strictly dominated move), rationality can no longer be common knowledge

and solution concepts that build on this assumption are no longer appropriate. Au-

mann and Brandenburger (1995) however argue that Nash equilibrium does not build

on this common knowledge assumption. Reny (1993), on the other hand, concludes

from the above that a theory of rational behavior cannot be developed in a context that

does not allow for irrational behavior, a conclusion similar to the one also reached in

Selten (1975) and Aumann (1987b). Aumann (1995), however, disagrees with the view

that the assumption of common knowledge of rationality is impossible to maintain in

extensive form games with perfect information. As he writes, “The aim of this paper is

to present a coherent formulation and proof of the principle that in PI games, common

knowledge of rationality implies backward induction” (p. 7) (see also Aumann (1998)

for an application to Rosenthal’s centipede game; the references in that paper provide

further information, also on other points of view).

We now leave this discussion on backward induction in games with perfect information

and move on to discuss more general games. Selten (1965) notes that the argument

leading to (3.1) can be extended beyond the class of games with perfect information. If

the game g admits a subgame γ, then the expected payoffs of s∗ in γ depend only on what

s∗ prescribes in γ. Denote this restriction of s∗ to γ by s∗γ. Once the subgame γ is reached,



31

all other parts of the game have become strategically irrelevant, hence, Selten argues

that, for s∗ to be self-enforcing, it is necessary that s∗γ be self-enforcing for every subgame

γ. Selten defined a subgame perfect equilibrium as an equilibrium s∗ of g that induces

a Nash equilibrium s∗γ in each subgame γ of g and he proposed subgame perfection as

a necessary requirement for self-enforcingness. Since every equilibrium of a subgame of

a finite game can be “extended” to an equilibrium of the overall game, it follows that

every finite extensive form game has at least one subgame perfect equilibrium.

Existence is, however, not as easily established for games in which the strategy spaces are

continuous. In that case, not every subgame equilibrium is part of an overall equilibrium:

Players moving later in the game may be forced to break ties in a certain way, in order to

guarantee that players who moved earlier indeed played optimally. (As a simple example,

let player 1 first choose x ∈ [0, 1] and let then player 2, knowing x, choose y ∈ [0, 1].
Payoffs are give by u1(x, y) = xy and u2(x, y) = (1−x)y. In the unique subgame perfect
equilibrium both players choose 1 even though player 2 is completely indifferent when

player 1 chooses x = 1.) Indeed, well-behaved continuous extensive form games need not

have a subgame perfect equilibrium, as Harris et al. (1995) have shown. However, these

authors also show that, for games with almost perfect information (“stage” games),

existence can be restored if players can observe a common random signal before each

new stage of the game which allows them to correlate their actions. For the special case

where information is perfect, i.e. information sets are singletons, Harris (1985) shows

that a subgame perfect equilibrium does exist even when correlation is not possible (see

also Hellwig et al. (1990)).

Other chapters of this Handbook contain ample illustrations of the concept of subgame

perfect equilibrium, hence, we will not give further examples. It suffices to remark here

that subgame perfection is not sufficient for self-enforcingness, as is illustrated by the

game from Figure 3.



32

@
@

@
@

@

¡
¡

¡
¡

¡

1

r1l1

(2, 2)

l2 r2

t 3, 1 1, 0

b 0, 1 0, x

l2 r2

l1 2, 2 2, 2

r1t 3, 1 1, 0

r1b 0, 1 0, x

Figure 3: Not all subgame perfect equilibria are self-enforcing

The left-hand side of Figure 3 illustrates a game where player 1 first chooses whether or

not to play a 2× 2 game. If player 1 chooses r1, both players are informed that r1 has
been chosen and that they have to play the 2× 2 game. This 2× 2 game is a subgame
of the overall game and it has (t, l2) as its unique equilibrium. Consequently, (r1t, l2) is

the unique subgame perfect equilibrium. The game on the right is the (semi-reduced)

normal form of the game on the left. The only difference between the games is that,

in the normal form, player 1 chooses simultaneously between l1, r1t and r1b and that

player 2 does not get to hear that player 1 has not chosen l1. However, these changes

appear inessential since player 2 is indifferent between l2 and r2 when player 1 chooses

l1. Hence, it would appear that an equilibrium is self-enforcing in one game only if it

is self-enforcing in the other. However, the sets of subgame perfect equilibria of these

games differ. The game on the right does not admit any proper subgames so that the

Nash equilibrium (l1, r2) is trivially subgame perfect.

3.3 Perfect equilibria

We have seen that Nash equilibria may prescribe irrational, non-maximizing behavior at

unreached information sets. Selten (1975) proposes to eliminate such non-self-enforcing

equilibria by eliminating the possibility of unreached information sets. He proposes to

look at complete rationality as a limiting case of incomplete rationality, i.e. to assume

that players make mistakes with small vanishing probability and to restrict attention to
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the limits of the corresponding equilibria. Such equilibria are called (trembling hand)

perfect equilibria.

Formally, for an extensive form game g, Selten (1975) assumes that at each information

set h ∈ Hi player i will, with a small probability εh > 0, suffer from “momentary

insanity” and make a mistake. Note that εh is assumed not to depend on the intended

action at h. If such a mistake occurs, player i’s behavior is assumed to be governed by

some unspecified psychological mechanism which results in each choice c at h occurring

with a strictly positive probability σh(c). Selten assumes each of these probabilities

εh and σh(c) (h ∈ Hi, c ∈ Ch) to be independent of each other and also to be

independent of the corresponding probabilities of the other players. As a consequence of

these assumptions, if a player i intends to play the behavior strategy si, he will actually

play the behaviour strategy sε,σi given by

sε,σi (c) = (1− εh)sih(c) + εhσh(c) (c ∈ Ch, h ∈ Hi). (3.2)

Obviously, given these mistakes all information sets are reached with positive probability.

Furthermore, if players intend to play s̄, then, given the mistake technology specified by

(ε,σ), each player i will at each information set h intend to choose a local strategy sih

that satisfies

ui(s̄
ε,σ\sih) ≥ ui(s̄ε,σ\s0ih) all s0ih ∈ Sih. (3.3)

If (3.3) is satisfied by sih = s̄ih at each h ∈ ∪iHi (i.e. if the intended action optimizes
the payoff taking the constraints into account), then s̄ is said to be an equilibrium of the

perturbed game gε,σ. Hence, (3.3) incorporates the assumption of persistent rationality.

Players try to maximize whenever they have to move, but each time they fall short of

the ideal. Note that the definitions have been chosen to guarantee that s̄ is an equilib-

rium of gε,σ if and only if s̄ is an equilibrium of the corresponding perturbation of the

agent normal form of g. A straightforward application of Kakutani’s fixed point theorem

yields that each perturbed game has at least one equilibrium. Selten (1975) then defines

s̄ to be a perfect equilibrium of g if there exist sequences εk, σk of mistake probabilities

(εk > 0, εk → 0) and mistake vectors σkih(c) > 0 and an associated sequence s
k with sk

being an equilibrium of the perturbed game gε
k,σk such that sk → s̄ as k → ∞. Since
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the set of strategy vectors is compact, it follows that each game has at least one perfect

equilibrium. It may also be verified that s̄ is a perfect equilibrium of g if and only if

there exists a sequence sk of completely mixed behavior strategies (skih(c) > 0 for all

i, h, c, k) that converges to s̄ as k → ∞, such that s̄ih is a local best reply against any
element in the sequence, i.e.

ui(s
k\s̄ih) = max

sih∈Sih
ui(s

k\sih) (all i, h, k). (3.4)

Note that for s̄ to be perfect, it is sufficient that s̄ can be rationalized by some sequence

of vanishing trembles, it is not necessary that s̄ be robust against all possible trembles.

In the next section we will discuss concepts that insist on such stronger stability. We

will also encounter concepts that require robustness with respect to specific sequences

of trembles. For example, Harsanyi and Selten’s (1988) concept of uniformly perfect

equilibria is based on the assumption that all mistakes are equally likely. In contrast,

Myerson’s (1978) properness concept builds on the assumption that mistakes that are

more costly are much less likely.

It is easily verified that each perfect equilibrium is subgame perfect. The converse is not

true: In the game on the right of Figure 3 with x ≤ 1, player 2 strictly prefers to play
l2 if player 1 chooses r1t and r1b by mistake, hence, only (r1t, l2) is perfect. However,

since there are no subgames, (l1, r2) is subgame perfect.

By definition, the perfect equilibria of the extensive form game g are the perfect equi-

libria of the agent normal form of g. However, they need not coincide with the perfect

equilibria of the associated normal form. Applying the above definitions to the normal

form shows that s̄ is a perfect equilibrium of a normal form game g = hA, ui if there ex-
ists a sequence of completely mixed strategy profiles sk with sk → s̄ such that s̄ ∈ B(sk)
for all k, i.e.

ui(s
k\s̄i) = max

si∈Si
ui(s

k\si) (all i, k). (3.5)

Hence, we claim that the global conditions (3.5) may determine a different set of solutions

than the local conditions (3.4). As a first example, consider the game from Figure 4. In
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the extensive form, player 1 is justified to choose L if he expects himself, at his second

decision node, to make mistakes with a larger probability than player 2 does. Hence,

the outcome (1, 2) is perfect in the extensive form. In the normal form, however, Rl1 is

a strategy that guarantees player 1 the payoff 1. This strategy dominates all others, so

that perfectness forces player 1 to play it, hence, only the outcome (1, 1) is perfect in

the normal form. Motivated by the consideration that a player may be more concerned

with mistakes of others than with his own, Van Damme (1984) introduces the concept

of a quasi-perfect equilibrium. Here each player follows a strategy that at each node

specifies an action that is optimal against mistakes of other players, keeping the player’s

own strategy fixed throughout the game. Mertens (1992) has argued that this concept

of “quasi-perfect equilibria” is to be preferred above “extensive form perfect equilibria”.

(We will return to the concept below.)
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(1, 2) (0, 0) (1, 1) (0, 0)
l2 r2

L 1, 2 0, 0

Rl1 1, 1 1, 1

Rr1 0, 0 0, 0

Figure 4: A perfect equilibrium of the extensive form

need not be perfect in the normal form

Conversely, we have that a perfect equilibrium of the normal form need not even be

subgame perfect in the extensive form. The game from Figure 3 with x > 1 provides

an example. Only the outcome (3,1) is subgame perfect in the extensive form. In the

normal form, player 2 is justified in playing r2 if he expects that player 1 is (much)

more likely to make the mistake r1b than to make the mistake r1t. Hence, (l1, r2) is a

perfect equilibrium in the normal form. Note that in both examples there is at least one

equilibrium that is perfect in both the extensive and the normal form. Mertens (1992)
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discusses an example in which the sets of perfect equilibria of these game forms are dis-

joint: the normal form game has a dominant strategy equilibrium, but this equilibrium

is not perfect in the extensive form of the game.

It follows from (3.5) that a perfect equilibrium strategy of a normal form game cannot

be weakly dominated. (Strategy s0i is said to be weakly dominated by s
00
i if ui(s\s00i ) ≥

ui(s\s0i) for all s and ui(s\s00i ) > ui(s\s0i) for some s.) Equilibria in undominated strate-
gies are not necessarily perfect, but an application of the separating hyperplane theorem

shows that the two concepts coincide in the 2-person case (Van Damme (1983)). (In

the general case a strategy si is not weakly dominated if and only if it is a best reply

against a completely mixed correlated strategy of the opponents.)

Before summarizing the discussion from this section in a theorem we note that games

in which the strategy spaces are continua and payoffs are continuous need not have

equilibria in undominated strategies. Consider the 2-player game in which each player i

chooses xi from [0, 12 ] and in which ui(x) = xi if xi ≤ xj/2 and ui(x) = xj(1−xi)/2−xj
otherwise. Then the unique equilibrium is x = 0, but this is in dominated strategies.

We refer to Simon and Stinchcombe (1995) for definitions of perfectness concepts for

continuous games.

Theorem 8 (Selten (1975)). Every game has at least one perfect equilibrium. Every

extensive form perfect equilibrium is a subgame perfect equilibrium, hence, a Nash equi-

librium. An equilibrium of an extensive form game is perfect if and only if it is perfect in

the associated agent normal form. A perfect equilibrium of the normal form need not be

perfect in the extensive form and also the converse need not be true. Every perfect equi-

librium of a strategic form game is in undominated strategies and, in 2-person normal

form games, every undominated equilibrium is perfect.

3.4 Sequential equilibria

Kreps and Wilson (1982a) propose to eliminate irrational behavior at unreached infor-

mation sets in a somewhat different way than Selten does. They propose to extend the

applicability of (3.1) by explicitly specifying beliefs (i.e. conditional probabilities) at
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each information set so that posterior expected payoffs can always be computed. Hence,

whenever a player reaches an information set, he should, in conformity with Bayesian

decision theory, be able to produce a probability distribution on the nodes in that set

that represents his uncertainty. Of course, players’ beliefs should be consistent with

the strategies actually played (i.e. beliefs should be computed from Bayes’ rule when-

ever possible) and they should respect the structure of the game (i.e. if a player has

essentially the same information at h as at h0, his beliefs at these sets should coincide).

Kreps and Wilson ensure that these two conditions are satisfied by deriving the beliefs

from a sequence of completely mixed strategies that converges to the strategy profile in

question.

Formally, a system of beliefs µ is defined as a map that assigns to each information set

h ∈ ∪iHi a probability distribution µh on the nodes in that set. The interpretation is
that, when h ∈ Hi is reached, player i assigns a probability µh(x) to each node x in h.
The system of beliefs µ is said to be consistent with the strategy profile s if there exists

a sequence sk of completely mixed behavior strategies (skih(c) > 0 for all i, h, k, c) with

sk → s as k →∞ such that

µh(x) = lim
k→∞

ps
k

(x|h) for all h, x (3.6)

where ps
k
(x|h) denotes the (well-defined) conditional probability that x is reached given

that h is reached and sk is played. Write uµih(s) for player i’s expected payoff at h

associated with s and µ, hence uµih(s) = Σx∈hµh(x)uix(s), where uix is as defined in

Section 3.1. The profile s is said to be sequentially rational given µ if

uµih(s) ≥ uµih(s\s0i) all i, h, s0i. (3.7)

An assessment (s, µ) is said to be a sequential equilibrium if µ is consistent with s and

if s is sequentially rational given µ. Hence, the difference between perfect equilibria and

sequential equilibria is that the former concept requires ex post optimality approaching

the limit, while the latter requires this only at the limit. Roughly speaking, perfectness

amounts to sequentiality plus admissibility (i.e. the prescribed actions are not locally

dominated). Hence, if s is perfect, then there exists some µ such that (s, µ) is a sequen-

tial equilibrium, but the converse does not hold: In a normal form game every Nash
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equilibrium is sequential, but not every Nash equilibrium is perfect. The difference be-

tween the concepts is only marginal: for almost all games the concepts yield the same

outcomes. The main innovation of the concept of sequential equilibrium is the explicit

incorporation of the system of beliefs sustaining the strategies as part of the definition

of equilibrium. In this, it provides a language for discussing the relative plausibility of

various systems of beliefs and the associated equilibria sustained by them. This language

has proved very effective in the discussion of equilibrium refinements in games with in-

complete information (see, for example, Kreps and Sobel (1994)). We summarize the

above remarks in the following theorem. (In it, we abuse the language somewhat: s ∈ S
is said to be a sequential equilibrium if there exists some µ such that (s, µ) is sequential.)

Theorem 9 (Kreps and Wilson (1982a), Blume and Zame (1994)). Every perfect equi-

librium is sequential and every sequential equilibrium is subgame perfect. For any game

structure Γ we have that for almost all games hΓ, ui with that structure the sets of perfect
and sequential equilibria coincide. For such generic payoffs u, the set of perfect equilibria

depends continuously on u.

Let us note that, if the action spaces are continua, and payoffs are continuous, a se-

quential equilibrium need not exist. A simple example is the following signalling game

(Van Damme (1987b)). Nature first selects the type t of player 1, t ∈ {0, 2} with both
possibilities being equally likely. Next, player 1 chooses x ∈ [0, 2] and thereafter player
2, knowing x but not knowing t, chooses y ∈ [0, 2]. Payoffs are u1(t, x, y) = (x− t)(y− t)
and u2(t, x, y) = (1− x)y. If player 2 does not choose y = 2− t at x = 1, then type t of
player 1 does not have a best response. Hence, there is at least one type that does not

have a best response, and a sequential equilibrium does not exist.

In the literature one finds a variety of solution concepts that are related to the sequential

equilibrium notion. In applications it might be difficult to construct an approximating

sequence as in (3.6), hence, one may want to work with a more liberal concept that

incorporates just the requirement that beliefs are consistent with s whenever possible,



39

hence µh(x) = p
s(s|h) whenever ps(h) > 0. Combining this condition with the sequen-

tial rationality requirement (3.7) we obtain the concept of perfect Bayesian equilibrium

which has frequently been applied in dynamic games with incomplete information. Some

authors have argued that in the context of an incomplete information game, one should

impose a support restriction on the beliefs: once a certain type of a player is assigned

probability zero, the probability of this type should remain at zero for the remainder

of the game. Obviously, this restriction comes in handy when doing backward induc-

tion. However, the restriction is not compelling and there may exist no Nash equilibria

satisfying it (see Madrigal et al. (1987), Noldeke and Van Damme (1990)). For further

discussions on variations of the concept of perfect Bayesian equilibrium, the reader is

referred to Fudenberg and Tirole (1991).

Since the sequential rationality requirement (3.7) has already been discussed extensively

in Section 3.2, there is no need to go into detail here. Rather let us focus on the con-

sistency requirement (3.6). When motivating this requirement, Kreps/Wilson refer to

the intuitive idea that when a player reaches an information set h with ps(h) = 0, he

reassesses the game, comes up with an alternative hypothesis s0 (with ps
0
(h) > 0) about

how the game is played and then constructs his beliefs at h from s0. A system of beliefs

is called structurally consistent if it can be constructed in this way. Kreps and Wilson

claimed that consistency, as in (3.6), implies structural consistency, but this claim was

shown to be incorrect in Kreps and Ramey (1987): There may not exist an equilibrium

that can be sustained by beliefs that are both consistent and structurally consistent.

At first sight this appears to be a serious blow to the concept of sequential equilibrium,

or at least to its motivation. However, the problem may be seen to lie in the idea of

reassessing the game, which is not intuitive at all. First of all, it goes counter to the idea

of rational players who can foresee the play in advance: They would have to reassess

at the start. Secondly, interpreting strategy vectors as beliefs about how the game will

be played implies there is no reassessment: All agents have the same beliefs about the

behavior of each agent. Thirdly, the combination of structural consistency with the

sequential rationality requirement (3.7) is problematic: If player i believes at h that s0 is

played, shouldn’t he then optimize against s0 rather then against s? Of course, rejecting
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structural consistency leaves us with the question of whether an alternative justification

for (3.6) can be given. Kohlberg and Reny (1997) provide such a natural interpretation

of consistency by relying on the idea of consistent probability systems.

3.5 Proper equilibria

In Section 3.1 we have seen that perfectness in the normal form is not sufficient to

guarantee (subgame) perfectness in the extensive form. This observation raises the

question of whether backward induction equilibria (say sequential equilibria) from the

extensive form can already be detected in the normal form of the game. This question

is important since it might be argued that, since a game is nothing but a collection

of simultaneous individual decision problems, all information that is needed to solve

these problems is already contained in the normal form of the game. The criteria for

self-enforcingness in the normal form are no different from those in the extensive form:

If the opponents of player i stick to s, then the essential information for i’s decision

problem is contained in this normal form: If i decides to deviate from s at a certain

information set h, he can already plan that deviation beforehand, hence, he can deviate

in the normal form. It turns out that the answer to the opening question is yes: An

equilibrium that is proper in the normal form induces a sequential equilibrium outcome

in every extensive form with that normal form.

Proper equilibria were introduced in Myerson (1978) with the aim of eliminating certain

deficiencies in Selten’s perfectness concept. One such deficiency is that adding strictly

dominated strategies may enlarge the set of perfect equilibria. As an example, consider

the game from the right-hand side of Figure 3 with the strategy r1b eliminated. In this

2 × 2 game only (r1t, b) is perfect. If we then add the strictly dominated strategy r1b,
the equilibrium (l1, r2) becomes perfect. But, of course, strictly dominated strategies

should be irrelevant; they cannot determine whether or not an outcome is self-enforcing.

Myerson argues that, in Figure 3, player 2 should not believe that the mistake r1b is

more likely than r1t. On the contrary, since r1t dominates r1b, the mistake r1b is more

severe than the mistake r1t; player 1 may be expected to spend more effort at preventing
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it and as a consequence it will occur with smaller probability. In fact, Myerson’s concept

of proper equilibrium assumes such a more costly mistake to occur with a probability

that is of smaller order.

Formally, for a normal form game hA,ui and some ε > 0, a strategy vector sε ∈ S is
said to be an ε-proper equilibrium if it is completely mixed (i.e. sεi (ai) > 0 for all i, all

ai ∈ Ai) and satisfies

if ui(sε\ai) < ui(sε\bi) then sεi (ai) ≤ εsεi (bi) (all i, ai, bi). (3.8)

A strategy vector s ∈ S is a proper equilibrium if it is a limit, as ε → 0, of a sequence

sε of ε−proper equilibria.
Myerson (1978) shows that each strategic form game has at least one proper equilibrium

and it is easily seen that any such equilibrium is perfect. Now, let g be an extensive

form game with semi-reduced normal form n(g) and, for ε → 0, let sε be an ε-proper

equilibrium of n(g) with sε → s as ε → 0. Since sε is completely mixed, it induces

a completely mixed behavior strategy s̄ε in g. Let s̄ = limε→0 s̄ε.Then s̄ is a behavior

strategy vector that induces the same outcome as s does, ps̄ = ps. (Note that s need

not induce a full behavior strategy vector; as s was defined in the semi-reduced nor-

mal form, it does not necessarily specify a unique action at information sets that are

excluded by the players themselves). Condition (3.8) now implies that at each informa-

tion set h, s̄i assigns positive probability only to the pure actions at h that maximize

the local payoff at h against s̄ε. Namely, if c is a best response at h and c0 is not, then

for each pure strategy in the normal form that prescribes to play c0 there exists a pure

strategy that prescribes to play c and that performs strictly better against sε. (Take

strategies that differ only at h.) Condition (3.8) then implies that in the normal form

the total probability of the set of strategies choosing c0 is of smaller order than the total

probability of choosing c, hence, the limiting behavior strategy assigns probability 0 to

c0. Hence, we have shown that each player always maximizes his local payoff, taking

the mistakes of opponents into account. In other words, using the terminology of Van

Damme (1984), the profile s is a quasi-perfect equilibrium. By the same argument, s

is a sequential equilibrium. Formally, let µε be the system of beliefs associated with

s̄ε and let µ = limε→0 µε. Then the assessment (s̄, µ) satisfies (3.6) and (3.7), hence, it
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is a sequential equilibrium of g. The following theorem summarizes the above discussion.

Theorem 10 (i) (Myerson (1978)). Every strategic form game has at least one

proper equilibrium. Every proper equilibrium is perfect.

(ii) (Van Damme (1984), Kohlberg and Mertens (1986)). Let g be an extensive form

game with semi-reduced normal form n(g). If s is a proper equilibrium of n(g),

then ps is a quasi-perfect and a sequential equilibrium outcome in g.

Mailath et al. (1997) have shown that sorts of converses to Theorem 10(ii) hold as well.

Let {sε} be a converging sequence of completely mixed strategies in a semi-reduced
normal form game n(g). This sequence induces a quasi-perfect equilibrium in every

extensive form game with semi-reduced normal form n(g) if and only if the limit of {sε}
is a proper equilibrium that is supported by the sequence. It is important that the

same sequence be used: Hillas (1996) gives an example of a strategy profile that is not

proper and yet is quasi-perfect in every associated extensive form. Secondly, Mailath et

al. (1997) define a concept of normal form sequential equilibrium and they show that

an equilibrium is normal form sequential if and only if it is sequential in every extensive

form game with that semi-reduced normal form.

Theorem 10 (ii) appears to be the main application of proper equilibrium. One other

application deserves to be mentioned: In 2-person zero-sum games, there is essentially

one proper equilibrium and it is found by the procedure of cautious exploitation of the

mistakes of the opponent that was proposed by Dresher (1961) (see Van Damme (1983,

Sect. 3.5)).

4 Forward induction and stable sets of equilibria

Unfortunately, as the game of Figure 5 (a modification of a game discussed by Kohlberg

(1981)) shows, none of the concepts discussed thus far provides sufficient conditions for

self-enforcingness. In this game player 1 first chooses between taking up an outside
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option that yields him 2 (and the opponent 0) and playing a battle-of-the-sexes game.

Player 2 only has to move when player 1 chooses to play the subgame. In this game player

1 taking up his option and players continuing with (w1, s2) in the subgame constitutes

a subgame perfect equilibrium. The equilibrium is even perfect: player 2 can argue that

player 1 must have suffered from a sudden stroke of irrationality at his first move, but

that his player will come back to his senses before his second move and continue with

the plan (i.e. play w1) as if nothing had happened. In fact, the equilibrium (t, s2) is

even proper in the normal form of the game: properness allows player 2 to conclude that

the mistake pw1 is more likely than the mistake ps1 since pw1 is better than ps1 when

player 2 plays s2.
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s1 3, 1 0, 0

w1 0, 0 1, 3

Figure 5: Battle of the sexes with an outside option

However, the outcome where player 1 takes up his option does not seem self-enforcing.

If player 1 deviates and decides to play the battle-of-the-sexes game, player 2 should

not rush to conclude that player 1 must have made a mistake; rather he might first

investigate whether he can give a rational interpretation of this deviation. In the case

at hand, such an explanation can indeed be given. For a rational player 1 it does not

make sense to play w1 in the subgame since the plan pw1 is strictly dominated by the

outside option. Hence, combining the rationality of player 1 with the fact that this

player chose to play the subgame, player 2 should come to the conclusion that player 1

intends to play s1 in the subgame, i.e. that player 1 bets on getting more than his option

and that player 2 is sufficiently intelligent to understand this. Consequently, player 2
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should respond by w2, a move that makes the deviation of player 1 profitable, hence,

the equilibrium is not self-enforcing.

Essentially what is involved here is an argument of forward induction: players’ deduc-

tions about other players should be consistent with the assumption that these players

are pursuing strategies that constitute rational plans for the overall game. The back-

ward induction requirements discussed before were local requirements only taking into

account rational behaviour in the future. Forward induction requires that players’ de-

ductions be based on overall rational behavior whenever possible and forces players to

take a global perspective. Hence, one is led to an analysis by means of the normal form.

In this section we take such a normal form perspective and ask how forward induction

can be formulated. The discussion will be based on the seminal work of Elon Kohlberg

and Jean-François Mertens (Kohlberg and Mertens (1986), Kohlberg (1989), Mertens

(1987, 1989ab, 1991)). At this stage the reader may wonder whether there is no loss of

information in moving to the normal form, i.e. whether the concepts that were discussed

before can be recovered in the normal form. Theorem 10(ii) already provides part of

the answer as it shows that sequential equilibria can be recovered. Mailath et al. (1993)

discuss the question in detail and they show that also subgames and subgame perfect

equilibria can be recovered in the normal form.

4.1 Set-valuedness as a consequence of desirable properties

Kohlberg and Mertens (1986) contains a first and partial axiomatic approach to the

problem of what constitutes a self-enforcing agreement. (It should, however, be noted

that the authors stress that their requirements should not be viewed as axioms since

some of them are phrased in terms that are outside of decision theory.) Kohlberg and

Mertens argue that a solution of a game should:

(i) always exist,

(ii) be consistent with standard one-person decision theory,

(iii) be independent of irrelevant alternatives, and

(iv) be consistent with backward induction.
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(The third requirement states that strategies which certainly will not be used by ra-

tional players can have no influence on whether a solution is self-enforcing; it is the

formalisation of the forward induction requirement that was informally discussed above;

it will be given a more precise meaning below.) In this subsection we will discuss these

requirements (except for (iv), which was extensively discussed in the previous section),

and show that they imply that a solution cannot just be a single strategy profile but

rather has to be a set of strategy profiles. In the next subsection, we give formalized

versions of these basic requirements.

The existence requirement is fundamental and need not be discussed further. It guar-

antees that, if our necessary conditions for self-enforcingness leave only one candidate

solution, that solution is indeed self-enforcing. Without having an existence theorem,

we would run the risk of working with requirements that are incompatible, hence, of

proving vacuous theorems.

The second requirement from the above list follows from the observation that a game is

nothing but a simultaneous collection of one-person decision problems. In particular, it

implies that the solution of a game can depend only on the normal form of that game. As

a matter of fact, Kohlberg/Mertens argue that even less information than is contained

in the normal form should be sufficient to decide on self-enforcingness. Namely, they

take mixed strategies seriously as actions, and argue that a player is always able to add

strategies that are just mixtures of strategies that are already explicitly given to them.

Hence, they conclude that adding or deleting such strategies can have no influence on

self-enforcingness. Formally, define the reduced normal form of a game as the game that

results when all pure strategies that are equivalent to mixtures of other pure strategies

have been deleted. (Hence, strategy ai ∈ Ai is deleted if there exists s0i ∈ Si with

s0i(ai) = 0 such that uj(s\s0i) = uj(s\ai) for all j. The reader may ask whether the
reduced normal form is well-defined. We return to this issue in the next subsection.) As

a first consequence of consistency with one-person decision theory, Kohlberg/Mertens

insist that two games with the same reduced normal form be considered equivalent and,

hence, as having the same solutions.



46

Kohlberg/Mertens accept as a basic postulate from standard decision theory that a

rational agent will only choose undominated strategies, i.e. that he will not choose a

strategy that is weakly dominated. Hence, a second consequence of (ii) is that game solu-

tions should be undominated (admissible) as well. Furthermore, if players do not choose

undominated strategies, such strategies are actually irrelevant alternatives, hence, (iii)

requires that they can be deleted without changing the self-enforcingness of the solu-

tion. Hence, the combination of (ii) and (iii) implies that self-enforcing solutions should

survive iterated elimination of weakly dominated strategies. Note that the requirement

of independence of dominated strategies is a “global” requirement that is applicable

independent of the specific game solution that is considered. Once one has a specific

candidate solution, one can argue that, if the solution is self-enforcing, no player will use

a strategy that is not a best response against the solution, and, hence, that such inferior

strategies should be irrelevant for the study of the self-enforcingness of the solution.

Consequently, Kohlberg/Mertens require as part of (iii) that a self-enforcing solution

remains self-enforcing when a strategy that is not a best response to this solution is

eliminated.

Note that “axioms” (ii) and (iii) force the conclusion that only (3,1) can be self-enforcing

in the game of Figure 5: only this outcome survives iterated elimination of weakly

dominated strategies. The same conclusion can also be obtained without using such

iterative elimination: It follows from backward induction together with the requirement

that the solution should depend only on the reduced normal form. Namely, add to

the normal form of the game of Figure 5 the mixed strategy m = λt + (1 − λ)s1 with
1
2
< λ < 1 as an explicit pure strategy. The resulting game can be viewed as the normal

form associated with the extensive form game in which first player 1 decides between

the outside option t and playing a subgame with strategy sets {s1, w1,m} and {s2, w2}.
This extensive form game is equivalent to the extensive form from Figure 5, hence, they

should have the same solutions. However, the newly constructed game only has (3,1) as

a subgame perfect equilibrium outcome. (In the subgame w1 is strictly dominated by

m, hence player 2 is forced to play w2.)
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We will now show why (subsets of) the above “axioms” can only be satisfied by set-

valued solution concepts. Consider the trivial game from Figure 6. Obviously, player 1

choosing his outside option is self-enforcing. The question is whether a solution should

contain a unique recommendation for player 2. Note that the unique subgame perfect

equilibrium of the game requires player 2 to choose 1
2
l2 +

1
2
r2, hence, according to (i)

and (iv) this strategy should be the solution for player 2. However, according to (i), (ii),

and (iii), the solution should be l2 (eliminate the strategies in the order pl1, r2), while

according to these same axioms the solution should also be r2 (take the elimination

order pr1, l2). Hence, we see that, to guarantee existence, we have to allow for set-

valued solution concepts. Furthermore, we see that, even with set-valued concepts,

only weak versions of the axioms - that just require set inclusion - can be satisfied.

Actually, these weak versions of the axioms imply that in this game all equilibria should

belong to the solution. Namely, add to the normal form of the game of Figure 6 the

mixed strategy λt + (1 − λ)pl1 with 0 < λ < 1
2
as a pure strategy. Then the resulting

game is the normal form of an extensive form game that has µl2 + (1 − µ)r2 with
µ = (1 − 2λ)/(2− λ) as the unique subgame perfect equilibrium strategy for player 2.

Hence, as λ moves through (0, 1
2
), we trace half of the equilibrium set of player 2, viz.

the set {µl2+(1−µ)r2 : 0 < µ < 1
2
}. The other half can be traced by adding the mixed

strategy λt+ (1− λ)pr1 in a similar way. Hence, axioms (i), (ii) and (iv) imply that all
equilibrium strategies of player 2 belong to the solution.
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Figure 6: All Nash equilibria are equally good

The game of Figure 6 suggests that we should broaden our concept of a solution, that
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we should not always aim to give a unique strategy recommendation for a player at an

information set that can be reached only by irrational moves of other players. In the

game of Figure 6, it is unnecessary to give a specific recommendation to player 2 and

any such recommendation is somewhat artificial. Player 2 is dependent upon player 1 so

that his optimal choice seems to depend on the exact way in which player 1 is irrational.

However, our analysis has assumed rational players, and since no model of irrationality

has been provided, the theorist could be content to remain silent. Hence, a self-enforcing

solution should not necessarily pin down completely the behavior of players at unreached

points of the game tree. We may be satisfied if we can recommend what players do in

those circumstances that are consistent with players being rational, i.e. as long as the

play is according to the self-enforcing solution.

Note that by extending our solution notion to allow for multiple beliefs and actions

after irrational moves we can also get rid of the unattractive assumption of persistent

rationality that was discussed in Section 3.2 and that corresponds to a narrow reading

of axiom (iv). We might just insist that a solution contains a backward induction

equilibrium, not that it consists exclusively of backward induction equilibria. We should

not fully exclude the possibility that a player just made a one-time mistake and will

continue to optimize, but we should not force this assumption. In fact, the axioms

imply that the solution of a perfect information game frequently cannot just consist of

the subgame perfect equilibrium. Namely, consider the game TOL(3) represented in

Figure 7, which is a variation of a game discussed in Reny (1993). (TOL(n) stands for

“Take it or leave it with n rounds”. The game starts with $1 on the table in round 1

and each time the game moves to a next round, the amount of money doubles. In round

t, the player i with i(mod2) = t(mod2) has to move. The game ends as soon as a player

takes the money; if the game continues till the end, each player receives $2n−1 − 1. (In
the unique backwards induction equilibrium, player 1 takes the first dollar.)
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Figure 7: The game TOL (3)

The unique subgame perfect equilibrium of TOL(3) is (T1t, T2), which corresponds to

(T1, T2) in the semi-reduced normal form. If the solution of the game were just (T1, T2),

then L1t would not be a best reply against the solution and according to “axiom” (iii),

(T1, T2) should remain a solution when L1t is eliminated. However, in the resulting 2×2
game, the unique perfect equilibrium is (L1l, L2) so that the axioms force this outcome

to be the solution. Hence, the axioms imply that the strategy 1
4
L2+

3
4
T2 of player 2 has

to be part of the solution (in order to make L1t a best response against the solution):

player 1 cannot believe that, after player 2 has seen player 1 making the move L1, player

2 believes player 1 to be rational. Intuitively, stable sets have to be large since they

must incorporate the possibility of irrational play. Once we start eliminating dominated

and/or inferior strategies, we attribute more rationality to players, make them more

predictable and hence can make do with smaller stable sets. In formalizations of iterated

elimination, we naturally have set inclusion.

The question remains of what type of mathematical objects are candidates for solu-

tions of games now that we know that single strategy profiles do not qualify. In the

above examples, the set of all equilibria was suggested, but the examples were special

since there was only one connected component of Nash equilibria. More generally, one

might consider connected components as solution candidates; however, this might be
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too coarse. For example, if, in Figure 6, we were to change player 2’s payoffs in the

subgame in such a way as to make l2 strictly dominant, we would certainly recommend

player 2 to play l2 even if player 1 has made the irrational move. Hence, the answer

to the question appears unclear. Motivated by constructions like the above, and by the

interpretation of stable sets as patterns in which equilibria vary smoothly with beliefs or

presentation effects, Kohlberg/Mertens suggest connected subsets of equilibria as solu-

tion candidates. Hence, a solution is a subset of a component of the equilibrium set (cf.

Theorem 2). Note that since a generic game has only finitely many Nash equilibrium

outcomes (Theorem 7), all equilibria in the same connected component yield the same

outcome (since outcomes depend continuously on strategies); hence, for generic games

each Kohlberg/Mertens solution indeed generates a unique outcome. (See also Section

4.3.)

4.2 Desirable properties for strategic stability

In this subsection we rephrase and formalize (some consequences of) the requirements

(i)-(iv) from the previous subsection, taking the discussion from that subsection into

account.

Let Γ be the set of all finite games. A solution concept is a map S that assigns to each
game g ∈ Γ a collection of non-empty subsets of mixed strategy profiles for the game. A
solution T of g is a subset T of the set of mixed strategies of (the normal form) of g with

T ∈ S(g), hence, it is a set of profiles that S allows. The first fundamental requirement
that we encountered in the previous subsection was:

(E) Existence: S(g) 6= ∅

(We adopt the convention that, whenever a quantifier is missing, it should be read

as “for all”, hence (E) requires existence of at least one solution for each game.) Sec-

ondly, we will accept Nash equilibrium as a necessary requirement for self-enforcingness:

(NE) Equilibrium: If T ∈ S(g), then T ⊂ E(g)
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A third requirement discussed above was

(C) Connectedness: If T ∈ S(g) then T is connected.

As discussed in the previous subsection, Kohlberg/Mertens insist that rational play-

ers only play admissible strategies. One formalization of admissibility is the restriction

to undominated strategies, i.e. strategies that are best responses to correlated strate-

gies of the opponents with full support. If players make their choices independently, a

stronger admissibility suggests itself, viz. each player chooses a best response against

a completely mixed strategy combination of the opponents. Formally, say that s0i is an

admissible best reply against s if there exists a sequence sk of completely mixed strat-

egy vectors converging to s such that s0i is a best response against any element in the

sequence. Write Bai (s) for the set of all such admissible best replies, Bai (s) = Bai (s)∩Ai,
and let Ba(s) = XiBai (s). For any subset S 0 of S write Ba(S 0) = ∪s∈S0Ba(s). We can
now write the admissibility requirement as:

(A) Admissibility: If T ∈ S(g), then T ⊂ Ba(S).

Note that the combination of (NE) and (A) is almost equivalent to requiring perfec-

tion. The difference is that, as (3.5) shows, perfectness requires the approximating

sequence sk to be the same for each player. Accepting that players only use admissible

best responses implies that a strategy that is not an admissible best response against

the solution is certain not to be played and, hence, can be eliminated. Consequently,

we can write the independence of irrelevant alternatives requirement as:

(IIA) Independence of irrelevant alternatives: If a 6∈ Bai (T ), then T contains a solu-

tion of the game in which a has been eliminated.

Note that Bai (T ) ⊂ Bi(T )∩Bai (S), hence, (IIA) implies the requirements that strategies
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that are not best responses against the solution can be eliminated and that strategies

that are not admissible can be eliminated.

It is also a fundamental requirement that irrelevant players should have no influence on

the solutions. Formally, following Mertens (1990), say that a subset J of the player set

constitutes a small world if their payoffs do not depend on the actions of the players

not in J , i.e.

if sj = s0j for all j ∈ J, then uj(s) = uj(s0) for all j ∈ J. (4.1)

A solution has the small worlds property if the players outside the small world have no

influence on the solutions inside the small world. Formally, if we write gJ for the game

played by the insiders, then

(SMW) Small worlds property: If J is a small world in g, then TJ is a solution in

gJ if and only if it is a projection of a solution T in g.

Closely related to the small worlds property is the decomposition property: If two

disjoint player sets play different games in different rooms, it does not matter whether

one analyses the games separately or jointly. Formally, say that g decomposes at J if

both J and J̄ = I\J are small worlds in g.

(D) Decomposition: If g decomposes at J , then T ∈ S(g) if and only if T = TJ × TJ̄
with Tk ∈ S(gk) (k ∈ {J, J̄}).

We now discuss the “player splitting property” which deals with another form of decom-

position. Suppose g is an extensive form game and assume that there exists a partition

Pi of Hi (the set of information sets of player i) such that, if h, h0 belong to different

elements of Pi, there is no path in the tree that cuts both h and h0. In such a case,

the player can plan his actions at h without having to take into consideration his plans

at h0. More generally, plans at one element of the partition can be made indepen-

dently of plans at the other part and we do not limit the freedom of action of player

i if we replace this player by a collection of agents, one agent for each element of Pi.
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Consequently, we should require the two games to have the same self-enforcing solutions:

(PSP) Player splitting property : If g0 is obtained from g by splitting some player i

into a collection of independent agents, then S(g) = S(g0).

Note that for a solution concept having this property it does not matter whether a

signalling game (Kreps and Sobel (1994)) is analysed in normal form (also called the

Harsanyi-form in this case) or in agent normal form (also called the Selten-form). Also

note that in (PSP) the restriction to independent agents is essential: In the agent nor-

mal form of the game from Figure 5, the first agent of player 1 taking up his outside

option is a perfectly sensible outcome: Once the decisions are decoupled, the first action

cannot signal anything about the second action. We will return to this in Section 5.

We will now formalize the requirement that the solution of a game depends only an

those aspects of the problem that are relevant for the players’ individual decision prob-

lems, i.e. that the solution is ordinal (cf. Mertens (1987)). As already discussed above,

Mertens argues that rational players will only play admissible best responses. A natural

invariance requirement thus is that the solutions depend only on the admissible best-

reply correspondence, formally

(BRI) Best reply invariance: If Bag = Bag0 then, S(g) = S(g0).

Note that the application of (BRI) is restricted to games with the same player sets

and the same strategy spaces, hence, this requirement should be supplemented with

requirements that the names of the players and the strategies do not matter, etc.

In the previous subsection we also argued that games with the same reduced normal

form should be considered equivalent. In order to be able to properly formalize this

invariance requirement it turns out to be necessary to extend the domain of games

somewhat: After one has eliminated all equivalent strategies of a player, this player’s

strategy set need no longer be a full simplex. To deal with such possibilities, define an

I-person strategic form game as a tuple hS, ui where S = XiSi is a product of compact
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polyhedral sets and u is a multilinear map on S. Note that each such strategic form

game has at least one equilibrium, and that the equilibrium set consists of finitely many

connected components. Furthermore, all the requirements introduced above are mean-

ingful for strategic form games. Say that an I-person strategic form game g0 = hS 0, u0i is
a reduction of the I-person normal form game g = hA, ui if there exists a map f = (fi)i∈I
with fi : Si → S 0i being linear and surjective, such that u = u

0 ◦ f , hence, f preserves
payoffs. Call such a map f an isomorphism from g onto g0. The requirement that the

solution depends only on the reduced normal form may now be formalized as:

(I) Invariance: If f is an isomorphism from g onto g0, then S(g0) = {f(T ) : T ∈ S(g)}
and f−1(T 0) = ∪{T ∈ S(g) : f(T ) = T 0} for all T 0 ∈ S(g0).

It should be stressed here that in Mertens (1987) the requirements (BRI) and (I) are

derived from more abstract requirements of ordinality.

The final requirement that was discussed in the previous subsection was the backwards

induction requirement, which, in view of Theorem 10, can be formalized as:

(BI) Backwards induction: If T ∈ S(g), then T contains a proper equilibrium of g.

4.3 Stable sets of equilibria

In Kohlberg and Mertens (1986), three set-valued solution concepts are introduced that

aim to capture self-enforcingness. Unfortunately, each of these fails to satisfy at least

one of the above requirements so that that seminal paper does not come up with a

definite answer as to what constitutes a self-enforcing outcome. The definitions of these

concepts build on Theorem 3 that describes the structure of the Nash equilibrium cor-

respondence. The idea is to look at components of Nash equilibria that are robust to

slight perturbations in the data of the game. The structure theorem implies that at

least one such component exists. By varying the class of perturbations that are allowed,

different concepts are obtained. Formally define

(i)T is a stable set of equilibria of g if it is minimal among all the closed sets of equilibria
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T 0 that have the property that each perturbed game gε,σ with ε close to zero has an

equilibrium close to T 0.

(ii)T is a fully stable set of equilibria of g if it is minimal among all the closed sets of

equilibria T 0 that have the property that each game hS0, ui with S 0i a polyhedral set in
the interior of S 0i (for each i) that is close to g has an equilibrium close to T 0.

(iii)T is a hyperstable set of equilibria of g if it is minimal among all the closed sets of

equilibria T 0 that have the property that for each game g0 = hA0, u0i that is equivalent to
g and for each small payoff perturbation hA0, uεi of g0 there exists an equilibrium close

to T 0.

Kohlberg and Mertens (1986) show that every hyperstable set contains a set that is

fully stable and that every fully stable set contains a stable set. Furthermore, from

Theorem 3 they show that every game has a hyperstable set that is contained in a

single connected component of Nash equilibria and, hence, that the same property holds

for fully stable sets and stable sets. They, however, reject the (preliminary) concepts of

hyperstability and full stability because these don’t satisfy the admissibility requirement.

Kohlberg/Mertens write that stability seems to be the “right” concept but they are

forced to reject it since it violates (C) and (BI). (This concept does satisfy (E), (NE),

(A), (IIA), (BRI), and (I).) Kohlberg/Mertens conclude with “we hope that in the future

some appropriately modified definition of stability will, in addition, imply connectedness

and backwards induction.” Mertens (1989a, 1991) gives such a modification. We will

consider it below.

An example of a game in which every fully stable set contains an inadmissible equilibrium

(and hence in which every hyperstable set contains such an equilibrium) is obtained by

changing the payoff vector (0, 2) in TOL(3) (Figure 7) to (5, 5). The unique admissible

equilibrium then is (L1t, T2) but every fully stable set has to contain the strategy (L1l)

of player 1. Namely, if (in the normal form) player 1 trembles with a larger probability

to T1 when playing L1t than when playing L1l, we obtain a perturbed game in which

only (L1l, T2) is an equilibrium.

We now describe a 3-person game (attributed to Faruk Gul in Kohlberg and Mertens

(1986)) that shows that stable sets may contain elements from different equilibrium
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components and need not contain a subgame perfect equilibrium. Player 3 starts the

game by choosing between an outside option T (which yields payoffs (0, 0, 2)) or playing

a simultaneous move subgame with players 1 and 2 in which each of the three players

has strategy set {a, b} and in which the payoffs are as in the matrix from the left-hand

side of Figure 8 (x, y ∈ {a, b}, x 6= y). Hence, players 1 and 2 have identical payoffs and
they want to make the same choice as player 3. Player 3 prefers these players to make

different choices, but, if they make the same choice, he wants his choice to be different

from theirs.

x y

x 3, 3, 0 1, 1, 5

y 1, 1, 5 0, 0, 1

x

a b

a 3a3, 3a3 1, 1

b 1, 1 3b3, 3b3ppppppp
ppppppp

pppppp

B
B

BB

B
B
BB

ai

α
0 1

3
2
3

α α 1

ai

1
2

ai

Figure 8: Stable sets need not contain a subgame

perfect equilibrium

The game g described in the above story has a unique subgame perfect equilibrium:

player 3 chooses to play the subgame and each player chooses 1
2
a+ 1

2
b in this subgame.

This strategy vector constitutes a singleton component of the set of Nash equilibria. In

addition, there are two components in which player 3 takes up his option T . Writing

ai (resp. bi) for the probability with which player i (i = 1, 2) chooses a (resp. b), the

strategies of players 1 and 2 in this component are the solutions to the pair of inequalities

4(a1 + a2)− 9a1a2 ≤ 1 and 4(b1 + b2)− 9b1b2 ≤ 1. (4.2)

Note that the solution set of (4.2) indeed consists of two connected components, one

around (a, a) (i.e. a1 = a2 = 1) and one around (b, b). Now, let us look at perturbations
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of (the normal form of) g. If player 3 chooses to play the subgame with positive stability

ε and if, conditional on such a mistake, he chooses a (resp. b) with probability a3 (resp.

b3), players 1 and 2 face the game from the right-hand side of Figure 8. The equilibria

of this game are given by

ai =


0 if a3 <

1
3

0, 2− 3a3, 1 if 1
3
< a3 <

2
3

1 if 2
3
< a3,

hence, restricted to players 1 and 2, each perturbed game has (a, a) or (b, b) (or both)

as a strict equilibrium. If players 1 and 2 coordinate on any of these strict equilibria,

player 3 strictly prefers to play T , hence, {(a1, a2, T ), (b1, b2, T )} is a stable set of g.
Obviously, this set does not contain the subgame perfect equilibrium, and even yields a

different outcome.

A closer investigation may reveal the source of the difficulty and suggest a resolution of

the problem. Since problematic zero-probability events arise only from player 3 choosing

T , let us insist that he chooses to play the subgame with probability ε but, for simplicity,

let us not perturb the strategies of players 1 and 2. Formally, consider a perturbed game

gε,σ with ε1 = ε2 = 0, ε3 = ε > 0 and σ3 = (0,α, 1 − α), hence α is the probability
that player 3 chooses a if he makes a mistake. The middle panel in Figure 8 displays,

for any small ε > 0, the equilibrium correspondence as a function of α. (The horizontal

axis corresponds to α, the vertical one to ai.) Each perturbed game has an equilibrium

close to the subgame perfect equilibrium of g. This equilibrium is represented by the

horizontal line at ai = 1
2
. The inverted z-shaped figure corresponds to the solutions of

(4.3). If players 1 and 2 play such a solution that is sufficiently close to a pure strategy,

then T is the unique best response of player 3, hence, in that case we have an equilibrium

of the perturbed game with a3 = α. If players 1 and 2 play a solution of (4.3) that is

sufficiently close to ai = 1
2
(i.e. they choose ai ∈ (āi, ai) corresponding to the dashed

part of the z-curve), then we do not have an equilibrium unless a1 = a2 = a3 = 1
2
. (If

ai >
1
2
, then the unique best response of player 3 is to play b, hence a3 = εα < 1

3
so that

by (4.3) we should have ai = 0.) The points α and ᾱ where the solid z-curve changes
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into the dashed z-curve are somewhat special. Writing ai = 2− 3α we have that if each
player i (i = 1, 2) chooses a with probability ai, then player 3’s best responses are T

and b. Consequently, by playing b voluntarily with the appropriate probability, player

3 can enforce any a3 ∈ (εα,α), hence, if ε is sufficiently small and α > α, player 3 can
enforce a3 = α. We see that for each α ≥ α, the perturbed game has an equilibrium

with ai = ai. In the diagram, this branch is represented by the horizontal line at ai.

Of course, there is a similar branch at āi. Since the above search was exhaustive, the

middle panel in Figure 8 contains a complete description of the equilibrium graph, or

at least of its projection on the (α, ai)-space.

The critical difference between the “middle” branch of the equilibrium correspondence

and each of the other two branches is that in the latter cases it is possible to continuously

deform the graph, leaving the part over the extreme perturbations (α ∈ {0, 1}) intact,
in such a way that the interior is no longer covered, i.e. such that there are no longer

“equilibria” above the positive perturbations. Hence, although the projection from the

union of the top and bottom branches to the perturbations is surjective (as required by

stability), this projection is homologically trivial, i.e. it is homologous to the identity

map of the boundary of the space of perturbations. Building on this observation, and

on the topological structure of the equilibrium correspondence more generally, Mertens

(1989a, 1991) proposes a refinement of stability (to be called M-stability) that essen-

tially requires that the projection from a neighborhood of the set to a neighborhood

of the game should be homologically nontrivial. As the formal definition is somewhat

involved we will not give it here but confine ourselves to stating its main properties.

Let us, however, note that Mertens does not insist on minimality; he shows that this

conflicts with the ordinality requirement (cf. Section 4.5).

Theorem 11 (Mertens (1989a, 1990, 1991)). M-stable sets are closed sets of normal

form perfect equilibria that satisfy all properties listed in the previous subsection.

We close this subsection with a remark and with some references to recent literature.

First of all, we note that also in Hillas (1990) a concept of stability is defined that satisfies
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all properties from the list of the previous subsection (We will refer to this concept as

H-stability. To avoid confusion, we will refer to the stability concept that was defined

in Kohlberg and Mertens as KM-stability.) T is an H-stable set of equilibria of g if it is

minimal among all the closed sets of equilibria T 0 that have the following property: each

upper-hemicontinuous compact convex-valued correspondence that is pointwise close to

the best-reply correspondence of a game that is equivalent to g has a fixed point close to

T 0. The solution concept of H-stable sets satisfies the requirements (E), (NE), (C), (A),

(IIA), (BRI), (I) and (BI), but it does not satisfy the other requirement from Section

4.2. (The minimality requirement forces H-stable sets to be connected, hence, in the

game of Figure 8 only the subgame perfect equilibrium outcome is H-stable.) In Hillas

et al. (1999) it is shown that each M-stable set contains an H-stable set. That paper

discusses a couple of other related concepts as well.

I conclude this Section by referring to some other recent work. Wilson (1997) discusses

the role of admissibility in identifying self-enforcing outcomes. He argues that admis-

sibility criteria should be deleted when selecting among equilibrium components, but

that they may be used in selecting equilibria from a component, hence, Wilson argues

in favour of perfect equilibria in essential components, i.e. components for which the

degree (cf. Section 2.3) is non-zero. Govindan and Wilson (1999) show that, in 2-player

games, maximal M-stable sets are connected components of perfect equilibria, hence,

such sets are relatively easy to compute and their number is finite (On finiteness, see

Hillas et al. (1997).) The result implies that an essential component contains a stable

set, however, as Govindan/Wilson illustrate by means of several examples, inessential

components may contain stable sets as well.

4.4 Applications of stability criteria

Concepts related to strategic stability have been frequently used to narrow down the

number of equilibrium outcomes in games arising in economic contexts. (Recall that in

generic extensive games all equilibria in the same component have the same outcome

so that we can speak of stable and unstable outcomes.) Especially in the context of

signalling games many refinements have been proposed that were inspired by stability
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or by its properties (cf. Cho and Kreps (1987), Banks and Sobel (1987) and Cho and

Sobel (1990)). As this literature is surveyed in the chapter by Kreps and Sobel (1994),

there is no need to discuss these applications here (see Van Damme (1992)). I’ll confine

myself here to some easy applications and to some remarks on examples where the fine

details of the definitions make the difference.

It is frequently argued that the Folk Theorem, i.e. the fact that repeated games have a

plethora of equilibrium outcomes (see chapter 4 in this Handbook) shows a fundamental

weakness of game theory. However, in a repeated game only few outcomes may actually

be strategically stable. (General results, however, are not yet available.) To illustrate,

consider the twice-repeated battle-of-the-sexes game, where the stage game payoffs are

as in (the subgame occurring in) Figure 5 and that is played according to the standard

information conditions. The path h(s1, w2), (s1, w2)i in which player 1’s most preferred
stage equilibrium is played twice is not stable. Namely, the strategy s2w2 (i.e. deviate

to s2 and then play w2) is not a best response against any equilibrium that supports

this path, hence, if the path were stable, then according to (IIA) it should be possible

to delete this strategy. However, the resulting game does not have an admissible equi-

librium with payoff (6, 2) so that the path cannot be stable. (Admissibility forces player

1 to respond with w1 after 2 has played s2; hence, the deviation s2s2 is profitable for

player 2.) For further results on stability in repeated games, the reader is referred to

Balkenborg (1993), Osborne (1990), Ponssard (1991) and Van Damme (1989a).

Stability implies that the possibility to inflict damage on oneself confers power. Suppose

that before playing the one-shot battle-of-the-sexes game, player 1 has the opportunity

to burn 1 unit of utility in a way that is observable to player 2. Then the only stable out-

come is the one in which player 1 does not burn utility and players play (s1, w1), hence,

player 1 gets his most preferred outcome. The argument is simply that the game can

be reduced to this outcome by using (IIA). If both players can throw away utility, then

stability forces utility to be thrown away with positive probability: Any other outcome

can be upset by (IIA). (See Van Damme (1989a) for further details and Ben Porath and

Dekel (1992), Bagwell and Ramey (1996), Glazer and Weiss (1990) for applications.)

Most applications of stability in economics use the requirements from Section 4.2 to
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limit the set of solution candidates to one and they then rely on the existence theorem

to conclude that the remaining solution must be stable. Direct verification of stability

may be difficult; one may have to enumerate all perturbed games and investigate how

the equilibrium graph hangs together (see Mertens (1987, 1989a,b, 1991) for various

illustrations of this procedure and for arguments as to why certain shortcuts may not

work). Recently, Wilson (1992) has constructed an algorithm to compute a simply

stable component of equilibria in bimatrix games. Simply stable sets are robust against a

restricted set of perturbations, viz. one perturbs only one strategy (either its probability

or its payoff). Wilson amends the Lemke/Howson algorithm from Section 2.3 to make

it applicable to nongeneric bimatrices and he adds a second stage to it to ensure that

it can only terminate at a simply stable set. Whenever the Lemke/Howson algorithm

terminates with an equilibrium that is not strict, Wilson uses a perturbation to transit

onto another path. The algorithm terminates only when all perturbations have been

covered by some vertex in the same component. Unfortunately, Wilson cannot guarantee

that a simply stable component is actually stable.

In Van Damme (1989a) it was argued that stable sets (as originally defined by Kohlberg/

Mertens) may not fully capture the logic of forward induction. Following an idea origi-

nally discussed in McLennan (1985) it was argued that if an information set h ∈ Hi can
be reached only by one equilibrium s∗, and if s∗ is self-enforcing, player i should indeed

believe that s∗ is played if h is reached and, hence, only s∗ih should be allowed at h. A

2-person example in Van Damme (1989a) showed that stable equilibria need not satisfy

this forward-induction requirement. (Actually Gul’s example (Figure 8) already shows

this.) Hauk and Hurkens (1999) have recently shown that this forward-induction prop-

erty is satisfied by none of the stability concepts discussed above. On the other hand

they show that this property is satisfied by some evolutionary equilibrium concepts that

are related to those discussed in Section 4.5 below.

Gul and Pearce (1996) argue that forward induction loses much of its power when

public randomization is allowed; however, Govindan and Robson (1998) show that the

Gul/Pearce argument depends essentially on the use of inadmissible strategies.

Mertens (1992) describes a game in which each player has a unique dominant strategy,
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yet the pair of these dominant strategies is not perfect in the agent normal form. Hence,

the M-stable sets of the normal form and those of the agent normal form may be disjoint.

That same paper also contains an example of a nongeneric perfect information game

(where ties are not noticed when doing the backwards induction where the unique M-

stable set contains other outcomes besides the backwards induction outcome). (See also

Van Damme (1987b), pp. 32-33.)

Govindan (1995) has applied the concept of M-stability to the Kreps and Wilson (1982b)

chain store game with incomplete information. He shows that only the outcome that

was already identified in Kreps and Wilson (1982b) as the unique “reasonable” one,

is indeed the unique M-stable outcome. Govindan’s approach is to be preferred to

Kreps and Wilson’s since it does not rely on ad hoc methods. It is worth remarking

that Govindan is able to reach his conclusion just by using the properties of M-stable

equilibria (as mentioned in Theorem 11) and that the connectedness requirement plays

an important role in the proof.

4.5 Robustness and persistent equilibria

Many game theorists are not convinced that equilibria in mixed strategies should be

treated on equal footing with pure, strict equilibria; they express a clear preference

for pure equilibria. For example, Harsanyi and Selten (1988, p. 198) write, “Games

that arise in the context of economic theory often have many strict equilibrium points.

Obviously in such cases it is more natural to select a strict equilibrium point rather than

a weak one. Of course, strict equilibrium points are not always available (...) but it is

still possible to look for a principle that helps us to avoid those weak equilibrium points

that are especially unstable.” (They use the term “strong” where I write “strict”). In

this subsection we discuss such principles.

Harsanyi and Selten discuss two forms of instability associated with mixed strategy

equilibria. The first, weak form of instability results from the fact that even though a

player might have no incentive to deviate from a mixed equilibrium, he has no positive

incentive to play the equilibrium strategy either: any pure strategy that is used with

positive probability is equally good. As we have seen in Section 2.5, the reinterpretation
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of mixed equilibria as equilibria in beliefs provides an adequate response to the criticism

that is based on this form of instability. The second, strong form of instability is more

serious and cannot be countered so easily. This form of instability results from the fact

that, in a mixed equilibrium, if a player’s beliefs differ even slightly from the equilibrium

beliefs, optimizing behavior will typically force the player to deviate from the mixed

equilibrium strategy. In contrast, if an equilibrium is strict, a player is forced to play his

equilibrium strategy as long as he assigns a sufficiently high probability to the opponents

playing this equilibrium. For example, in the battle-of-the-sexes game (that occurs as

the subgame in Figure 5), each player is willing to follow the recommendation to play a

pure equilibrium as long as he believes that the opponent follows the recommendation

with a probability of at least 2
3
. In contrast, player i is indifferent between si and wi

only if he assigns a probability of exactly 1
3
to the opponent playing wj. Hence, it seems

that strict equilibria possess a type of robustness property that the mixed equilibrium

lacks. However, this difference is not picked up by any of the stability concepts that have

been discussed above: The mixed strategy equilibrium of the battle-of-the-sexes game

constitutes a singleton stable set according to each of the above stability definitions. In

this subsection, we will discuss some set-valued generalizations of strict equilibria that

do pick up the difference. They all aim at capturing the idea that equilibria should be

robust to small trembles in the equilibrium beliefs, hence, they address the question of

what outcome an outsider would predict who is quite sure, but not completely sure,

about the players’ beliefs. The discussion that follows is inspired by Balkenborg (1992).

If s is a strict equilibrium of g = hA, ui, then s is the unique best response against s,
hence {s} = B(s). We have already encountered a set-valued analogue of this uniqueness
requirement in Section 2.2, viz. the concept of a minimal curb set. Recall that C ⊂ A
is a curb set of g if

B(C) ⊂ C, (4.3)

i.e. if every best reply against beliefs that are concentrated on C again belongs to C.

Obviously, a singleton set C satisfies (4.4) only if it is a strict equilibrium. Nonsingleton

curb sets may be very large (for example, the set A of all strategy profiles trivially

satisfies (4.4)), hence in order to obtain more definite predictions, one can investigate
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minimal sets with the property (4.4). In Section 2.2 we showed that such minimal curb

sets exist, that they are tight, i.e. B(C) = C, and that distinct minimal curb sets are

disjoint. Furthermore, curb sets possess the same neighborhood stability property as

strict equilibria, viz. if C satisfies (4.4), then there exists a neighborhood U of Xi∆(Ci)

in S such that

B(U) ⊂ C. (4.4)

Despite all these nice properties, minimal curb sets do not seem to be the appropriate

generalization of strict equilibria. First, if a player i has payoff equivalent strategies,

then (4.4) requires all of these to be present as soon as one is present in the set, but

optimizing behavior certainly doesn’t force this conclusion: It is sufficient to have at least

one member of the equivalence class in the curb set. (Formally, define the strategies

s0i and s
00
i of player i to be i-equivalent if ui(s\s0i) = ui(s\s00i ) for all s ∈ S, and write

s0i ∼i s00i if s0i and s00i are i-equivalent.) Secondly, requirement (4.4) does not differentiate
among best responses, it might be preferable to work with the narrower set of admissible

best responses. As a consequence of these two observations, curb sets may include too

many strategies and minimal curb sets do not provide a useful generalization of the

strict equilibrium concept.

Kalai and Samet’s (1984) concept of persistent retracts doesn’t suffer from the two

drawbacks mentioned above. Roughly, this concepts results when requirement (4.5) is

weakened to “B(s)∩C 6= ∅ for any s ∈ U“. Formally, define a retract R as a Cartesian
product R = XiRi where each Ri is a nonempty, closed, convex subset of Si. A retract

is said to be absorbing if

B(s) ∩R 6= ∅ for all s in a neighbourhood U of R, (4.5)

that is, if against any small perturbation of strategy profile in R there exists a best

response that is in R. A retract is defined to be persistent if it is a minimal absorb-

ing retract. Zorn’s lemma implies that persistent retracts exist; an elementary proof

is indicated below. Kakutani’s fixed point theorem implies that each absorbing retract

contains a Nash equilibrium. A Nash equilibrium that belongs to a persistent retract

is called a persistent equilibrium. A slight modification of Myerson’s proof for the exis-

tence of proper equilibrium actually shows that each absorbing retract contains a proper
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equilibrium. Hence, each game has an equilibrium that is both proper and persistent.

Below we give examples to show that a proper equilibrium need not be persistent and

that a persistent equilibrium need not be proper.

Note that each strict equilibrium is a singleton persistent retract. The reader can easily

verify that in the battle-of-the-sexes game only the pure equilibria are persistent and

that (in the normal form of) the overall game in Figure 5 only the equilibrium (ps1, w2)

is persistent, hence, in this example, persistency selects the forward induction outcome.

As a side remark, note that s̄ is a Nash equilibrium if and only if {s̄} = R is a minimal
retract with the property “B(s) ∩ R 6= ∅ for all s ∈ R”, hence, persistency corresponds
to adding neighborhood robustness to the Nash equilibrium requirement.

Kalai and Samet (1984) show that persistent retracts have a very simple structure, viz.

they contain at most one representative from each i-equivalence class of strategies for

each player i. To establish this result, Kalai and Samet first note that two strategies s0i

and s00i are i-equivalent if and only if there exists an open set U in S such that, against

any strategy in U , s0i and s
00
i are equally good. Hence, it follows that, up to equivalence,

the best response of a player is unique (and pure) on an open and dense subset of S.

Note that, to a certain extent, a strategy that is not a best response against an open

set of beliefs is superfluous, i.e. a player always has a best response that is also a best

response to an open set in the neighborhood. Let us call s0i a robust best response against

s if there exists an open set U ∈ S with s in its closure such that s0i is a best response
against all elements in U . (Balkenborg (1992) uses the term semi-robust best response,

in order to avoid confusion with Okada’s (1983) concept.) Write Bri (s) for all robust best
responses of player i against s and Br(s) = XiBri (s). Note that Br(s) ⊂ Ba(s) ⊂ B(s)
for all s. Also note that a mixed strategy is a robust best response only if it is a mixture

of equivalent pure robust best responses. Hence, up to equivalence, robustness restricts

players to using pure strategies. Finally, note that an outside observer, who is somewhat

uncertain about the players’ beliefs and who represents this uncertainty by continuous

distributions on S, will assign positive probability only to players playing robust best

responses.
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The reader can easily verify that (4.6) is equivalent to

if s ∈ R and a ∈ Bri (s) then a ∼i s0i for some s0i ∈ Ri (all i, s). (4.6)

Hence, up to equivalence, all robust best responses against the retract must belong to

the absorbing retract. Minimality thus implies that a persistent retract contains at

most one representative from each equivalence class of robust best responses. From this

observation it follows that there exists an absorbing retract that is spanned by pure

strategies and that there exists at least one persistent retract. (Consider the set of all

retracts that are spanned by pure strategies. The set is finite, partially ordered and

the maximal element (R = S) is absorbing, hence, there exists a minimal element.) Of

course, for generic strategic form games, no two pure strategies are equivalent and any

pure best response is a robust best response. For such games it thus follows that R is a

persistent retract if and only if there exists a minimal curb set C such that Ri = ∆(Ci)

for each player i.

We will now investigate which properties from Section 4.2 are satisfied by persistent

retracts. We have already seen that persistent retracts exist; they are connected and

contain a proper equilibrium. Hence, the properties (E), (C), and (BI) hold. Also (IIA)

is satisfied, as follows easily from (4.7) and the fact that Br(s) ⊂ Ba(s). Also (BRI)
follows easily from (4.7). However, persistent retracts do not satisfy (NE). For example,

in the matching pennies game the entire set of strategies is the unique persistent retract.

Of course, persistency satisfies a weak form of (NE): any persistent retract contains a

Nash equilibrium. In fact, it can be shown that each persistent retract contains a stable

set of equilibria. (This is easily seen for stability as defined by Kohlberg and Mertens,

Mertens (1990) proves it for M-stability and Balkenborg (1992) proves the property for

H-stable sets.) Similarly, persistency satisfies a weak form of (A): (4.7) implies that

if R is a persistent retract and si is an extreme point of Ri, then si is a robust best

response, hence, si is admissible. Consequently, property (A) holds for the extreme

points of R, and each element in R only assigns positive probability to admissible pure

strategies. This, however, does not imply that the elements of R are themselves admis-

sible. For example, in the game of Figure 9, the only persistent retract is the entire

game, but the strategy (1
2
, 1
2
, 0) of player 1 is dominated. In particular the equilibrium
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h(1
2
, 1
2
, 0), (0, 0, 1)i is persistent but not perfect.

3, 0 0, 3 0, 2

0, 3 3, 0 0, 2

2, 0 2, 0 0, 0

Figure 9: A persistent equilibrium need not be perfect

Persistent retracts are not invariant. In Figure 9, replace the payoff “2” by “3
2
” so that

the third strategy becomes a duplicate of the mixture (1
2
, 1
2
, 0). The unique persistent re-

tract contains the mixed strategy (1
2
, 1
2
, 0), but it does not contain the equivalent strategy

(0, 0, 1). Hence, the invariance requirement (I) is violated. Balkenborg (1992), however,

shows that the extreme points of a persistent retract satisfy (I). He also shows that this

set of extreme points satisfies the small worlds property (SWP) and the decomposition

property (D).

A serious drawback of persistency is that it does not satisfy the player splitting property:

The agent normal form and the normal form of an incomplete information game can have

different persistent retracts. The reason is that the normal form forces different types to

have the same beliefs about the opponent, whereas the Selten form (i.e. the agent normal

form) allows different types to have different conjectures. (Cf. our discussion in Section

2.2.) Perhaps it is even more serious that also other completely inessential changes

in the game may induce changes in the persistent retracts and may make equilibria

persistent that were not persistent before. As an example, consider the game from

Figure 5 in which only the outcome (3, 1) is persistent. Now change the game such that,

when (pw1, w2) is played, the players don’t receive zero right away, but are rather forced

to play a matching pennies game. Assume players simultaneously choose “heads” or

“tails”, that player 1 receives 4 units from player 2 if choices match and that he has to

pay 4 units if choices differ. The change is completely inessential (the game that was

added has unique optimal strategies and value zero), but it has the consequence that

in the normal form, only the entire strategy space is persistent. In particular, player
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1 taking up his outside option is a persistent and proper equilibrium outcome of the

modified game.

For applications of persistent equilibria the reader is referred to Kalai and Samet (1985),

Hurkens (1996), Van Damme and Hurkens (1996), Blume (1994, 1996), and Balkenborg

(1993). Kalai and Samet consider “repeated” unanimity games. In each of finitely many

periods, players simultaneously announce an outcome. The game stops as soon as players

announce that same outcome, and then that outcome is implemented. Kalai and Samet

show that if there are at least as many rounds as there are outcomes, players will agree on

an efficient outcome in a (symmetric) persistent equilibrium. Hurkens (1996) analyzes

situations in which some players can publicly burn utility before the play of a game.

He shows that if the players who have this option have common interests (Aumann and

Sorin (1989)), then only the outcome that these players prefer most is persistent. Van

Damme and Hurkens (1996) study games in which players have common interests and in

which the timing of the moves is endogenous. They show that persistency forces players

to coordinate on the efficient equilibrium. Blume (1994, 1996) applies persistency to

a class of signalling games and he also obtains that persistent equilibria have to be

efficient. Balkenborg (1993) studies finitely repeated common interest games. He shows

that persistent equilibria are almost efficient.

The picture that emerges from these applications (as well as from some theoretical

considerations not discussed here, see Van Damme (1992)) is that persistency might

be more relevant in an evolutionary and/or learning context, rather than in the pure

deductive context we have assumed in this chapter. Indeed, Hurkens (1994) discusses

an explicit learning model in which play eventually settles down in a persistent retract.

The following proposition summarizes the main elements from the discussion in this

section:

Theorem 12 (i) (Kalai and Samet (1985)). Every game has a persistent retract.

Each persistent retract contains a proper equilibrium. Each strategy in a persistent

retract assigns positive probability only to robust best replies.

(ii) (Balkenborg (1992)). For generic strategic form games, persistent retracts corre-

spond to minimal curb sets.
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(iii) (Balkenborg (1992)). Persistent retracts satisfy the properties (E), (C), (IIA),

(BRI) and (BI) from Section 4.2, but violate the other properties. The set of

extreme points of persistent retracts satisfies (SWP), (D) and (I).

(iv) (Mertens (1990), Balkenborg (1992)). Each persistent retract contains an M-stable

set. It also contains an H-stable set as well as a KM-stable set.

5 Equilibrium selection

Up to now this paper has been concerned just with the first and basic question of

noncooperative game theory: Which outcomes are self-enforcing? The starting point of

our investigations was that being a Nash equilibrium is necessary but not sufficient for

self-enforcingness, and we have reviewed several other necessary requirements that have

been proposed. We have seen that frequently even the most stringent refinements of

the Nash concept allow multiple outcomes. For example, many games admit multiple

strict equilibria and any such equilibrium passes every test of self-enforcingness that has

been proposed up to now. In the introduction, however, we already argued that the

“theory” rationale of Nash equilibrium relies essentially on the assumption that players

can coordinate on a single outcome. Hence, we have to address the questions of when,

why and how players can reach such a coordinated outcome. One way in which such

coordination might be achieved is if there exists a convincing theory of rationality that

selects a unique outcome in every game and if this theory is common knowledge among

the players. One such theory of equilibrium selection has been proposed in Harsanyi and

Selten (1988). In this section we will review the main building blocks of that theory.

The theory from Harsanyi and Selten may be seen as derived from three basic pos-

tulates, viz. that a theory of rationality should make a recommendation that is (i) a

unique strategy profile, (ii) self-enforcing, and (iii) universally applicable. The latter re-

quirement says that no matter the context in which the game arises, the theory should

apply. It is a strong form of history-independence. Harsanyi and Selten (1988, pp.

342-43) refer to it as the assumption of endogenous expectations: the solution of the

game should depend only on the mathematical structure of the game itself, no matter
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the context in which this structure arises. The combination of these postulates is very

powerful; for example, one implication is that the solution of a symmetric game should

be symmetric. The postulates also force an agent normal form perspective: once a sub-

game is reached, only the structure of the subgame is relevant, hence, the solution of

a game has to project onto the solution of the subgame. Harsanyi and Selten refer to

this requirement as “subgame consistency”. It is a strong form of the requirement of

“persistent rationality” that was extensively discussed in Section 3. Of course, subgame

consistency is naturally accompanied by the axiom of truncation consistency: to find the

overall solution of the game it should be possible to replace a subgame by its solution.

Indeed, Harsanyi and Selten insist on truncation consistency as well. It should now

be obvious that the requirements that Harsanyi and Selten impose are very different

from the requirements that we discussed in Section 4.2. Indeed the requirements are

incompatible. For example, the Harsanyi/Selten requirements imply that the solution

of the game from Figure 5 is (tm1,m2) where mi =
1
4
si +

3
4
wi. Symmetry requires the

solution of the subgame to be (m1,m2) and the axioms of subgame and truncation con-

sistency prevent player 1 from signalling anything. If one accepts the Harsanyi/Selten

postulates, then it is common knowledge that the battle-of-the-sexes subgame has to

be played according to the mixed equilibrium, hence, if he has to play, player 2 must

conclude that player 1 has made a mistake. Note that uniqueness of the solution is

already incompatible with the pair (I), (BI) from Section 4.2. We showed that (I) and

(BI) leave only the payoff (3, 1) in the game of Figure 5, hence, uniqueness forces (3, 1)

as the unique solution of the “battle of the sexes”. However, if we would have given the

outside option to player 2 rather than to player 1, we would have obtained (1, 3) as the

unique solution. Hence, to guarantee existence, the approach from Section 4 must give

up uniqueness, i.e. it has to allow multiple solutions. Both (3,1) and (1,3) have to be

admitted as solutions of the battle-of-the-sexes game, in order to allow the context in

which the game is played to determine which of these equilibria will be selected. The ap-

proach to be discussed in this section, which requires context independence, is in sharp

conflict with that from the previous section. However, let us note that, although the two

approaches are incompatible, each of the approaches corresponds to a coherent point
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of view. We confine ourselves to presenting both points of view, to allow the reader to

make up his own mind.

5.1 Overview of the Harsanyi/Selten solution procedure

The procedure proposed by Harsanyi and Selten to find the solution of a given game

generates a number of “smaller” games which have to be solved by the same procedure.

The process of reduction and elimination should continue until finally a basic game is

reached which cannot be scaled down any further. The solution of such a basic game can

be determined by applying the tracing procedure to which we will return below. Hence,

the theory consists of a process of reducing a game to a collection of basic games, a rule

for solving each basic game, and a procedure for aggregating these basic solutions to a

solution of the overall game. The solution process may be said to consist of five main

steps, viz. (i) initialization, (ii) decomposition, (iii) reduction, (iv) formation splitting,

and (v) solution using dominance criteria. To describe these steps in somewhat greater

detail, we first introduce some terminology.

The Harsanyi/Selten theory makes use of the so-called standard form of a game, a form

that is in between the extensive form and the normal form. Formally, the standard form

consists of the agent normal form together with information about which agents belong

to the same player. Write I for the set of players in the game and for each i ∈ I, let
Hi = {ij : j ∈ Ji} be the set of agents of player i. Writing H = ∪iHi for the set of all
agents in the game, a game in standard form is a tuple g = hA, uiH where A = XijAij
with Aij being the action set of agent ij, and ui : A→ R for each player i. Harsanyi and

Selten work with this form since on the one hand they want to guarantee perfectness

in the extensive form, while on the other hand they want different agents of the same

player to have the same expectations about the opponents.

Given a game in extensive form, the Harsanyi/Selten theory should not be directly

applied to its associated standard form g; rather, for each ε > 0 that is sufficiently

small, the theory should be applied to the uniform ε-perturbation gε of the game. The

solution of g is obtained by taking the limit, as ε tends to zero, of the solution of gε.

The question of whether the limit exists is not treated in Harsanyi and Selten (1988);
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the authors refer to the unpublished working paper Harsanyi and Selten (1977) in which

it is suggested that there should be no difficulties. Formally, gε is defined as follows. For

each agent ij let σij be the centroid of Aij, i.e. the strategy that chooses all pure actions

in Aij with probability |Aij|−1. For ε > 0 sufficiently small, write εij = ε|Aij| and let
ε̃ = (εij)ij∈H . Recall, from Equation (3.2) that sε̃,σ denotes the strategy vector that

results when each player intends to play s, but players make mistakes with probabilities

determined by ε̃ and mistakes are given by σ. The uniformly perturbed game gε is the

standard form game hA, uεiH where the payoff function uε is defined by uεi (s) = ui(sε̃,σ).
Hence, in gε each agent ij mistakenly chooses each action with probability ε and the

total probability that agent ij makes a mistake is |Aij|ε.
Let C be a collection of agents in a standard form game g and denote the complement of

C by C̄. Given a strategy vector t for the agents in C̄, write gtC = hA,utiC for the reduced
game faced by the agents in C when the agents in C̄ play t, hence utij(s) = uij(s, t) for

ij ∈ C. Write gtC = gC and ut = uC in the special case where t is the centroid strategy
for each agent in C̄. The set C is called cell in g if for each t and each player i with an

agent in C there exist constants αi(t) > 0 and βi(t) ∈ R such that

uti(s) = αi(t)u
C
i (s) + βi(t) (for all s). (5.1)

Hence, if C is a cell, then up to positive linear transformations, the payoffs to agents

in C are completely determined by the agents in C. Since the intersection of two cells

is again a cell whenever this intersection is nonempty, there exist minimal cells. Such

cells are called elementary cells. Two elementary cells have an empty intersection. Note

that for the special case of a normal form game (each player has only one agent), each

cell is a small world. Also note that a transformation as in (5.1) leaves the best-reply

structure unchanged. Hence, if we had defined a small world as a set of players whose

(admissible) best responses are not influenced by outsiders, then each small world would

have been a cell. A solution concept that assigns to each standard form game g a unique

strategy vector f(g) is said to satisfy cell and truncation consistency if for each C that
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is a cell in g we have

fij(g) =


fij(g

C) if ij ∈ C

fij
³
gf(g

C)

C̄

´
if ij 6∈ C.

(5.2)

The reader may check that a subgame of a uniformly perturbed extensive form game

induces a cell in the associated perturbed standard form; hence, the axiom of cell and

truncation consistency formalizes the idea that the solution is determined by backward

induction in the extensive form.

If g is a standard form game and Bij is a nonempty set of actions for each agent ij, then

B = XijBij is called a formation if for each agent ij, each best response against any

correlated strategy that only puts probability on actions in B belongs to Bij. Hence, in

normal form games, formations are just like curb sets (cf. Section 2.2), the only difference

being that formations allow for correlated beliefs. As the intersection of two formations

is again a formation, we can speak about primitive formations, i.e. formations that do

not contain a proper subformation.

An action a of an agent ij is said to be inferior if there exists another action b of this

agent that is a best reply against a strictly larger set of (possibly) correlated beliefs

of the agents. Hence, noninferiority corresponds to the concept of robustness that we

encountered (for the case of independent beliefs) in Section 4.5. Any strategy that is

weakly dominated is inferior, but the converse need not hold.

Using the concepts introduced above, we can now describe the main steps employed in

the Harsanyi/Selten solution procedure:

1. Initialization: Form the standard normal form g of the game, and, for each ε > 0

that is sufficiently small, compute the uniformly perturbed game gε; compute the

solution f(gε) according to the steps described below and put f(g) = lim
ε↓0
f(gε).

2. Decomposition: Decompose the game into its elementary cells; compute the solu-

tion of an indecomposable game according to the steps described below and form

the solution of the overall game by using cell and truncation consistency.
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3. Reduction: Reduce the game by using the next three operations:.

(i) Eliminate all inferior actions of all agents.

(ii) Replace each set of equivalent actions of each agent ij (i.e. actions among

which all players are indifferent) by the centroid of that set.

(iii) Replace, for each agent ij, each set of ij-equivalent actions (i.e. actions

among which ij is indifferent no matter what the others do) by the centroid

strategy of that set.

By applying these steps, an irreducible game results. The solution of such a game

is by means of Step 4.

4. Solution:

(i) I nitialization: Split the game into its primitive formations and determine

the solution of each basic game associated with each primitive formation by

applying the tracing procedure to the centroid of that formation. The set of

all these solutions constitutes the first candidate set Ω1.

(ii) Candidate elimination and substitution: Given a candidate set Ω, determine

the setM(Ω) of maximally stable elements in Ω. These are those equilibria in

Ω that are least dominated in Ω. Dominance involves both payoff dominance

and risk dominance and payoff dominance ranks more important than risk

dominance. The latter is defined by means of the tracing procedure (see

below) and need not be transitive. Form the chain Ω = Ω1,Ωt+1 = M(Ωt)

until ΩT+1 = ΩT . If |ΩT | = 1, then ΩT is the solution, otherwise replace

ΩT by the trace, t(ΩT ), of its centroid and repeat the process with the new

candidate set Ω = ΩT−1\ΩT ∪ {t(ΩT )}.

It should be noted that it may be necessary to go through these steps repeatedly. Fur-

thermore, the steps are hierarchically ordered, i.e. if the application of Step 3(i) (i.e. the

elimination of inferior actions) results in a decomposable game, one should first return

to Step 2. The reader is referred to the flow chart on p. 127 of Harsanyi and Selten

(1988) for further details.
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The next two sections of the present paper are devoted to Step 4, the core of the solution

procedure. We conclude this subsection with some remarks on the other steps.

We already discussed Step 2, as well as the reliance on the agent normal form in the

previous subsection. Deriving the solution of an unperturbed game as a limit of solu-

tions of uniformly perturbed games has several consequences that might be considered

undesirable. For one, duplicating strategies in the unperturbed game may have an effect

on the outcome. Consider the normal form of the game from Figure 6. If we duplicate

the strategy pl1 of player 1, the limit solution prescribes r2 for player 2 (since the mis-

take pl1 is more likely than the mistake pr1), but if we duplicate pr1 then the solution

prescribes player 2 to choose l2. Hence, the Harsanyi/Selten solution does not satisfy

the invariance requirement (I) from Section 4.2, nor does it satisfy (IIA). Secondly, an

action that is dominated in the unperturbed game need no longer be dominated in the ε-

perturbed version of the game and, consequently, it is possible to construct an example

in which the Harsanyi/Selten solution is an equilibrium that uses dominated strategies

(Van Damme (1990)). Hence, the Harsanyi/Selten solution violates (A). Turning now

to the reduction step, we note that the elimination procedure implies that invariance is

violated. (Cf. the discussion on persistency in Section 4.5; note that any pure strategy

that is a mixture of non-equivalent pure strategies is inferior.) Let us also remark that

stable sets need not survive when an inferior strategy is eliminated. (See Van Damme

(1987a, Figure 10.3.1) for an example.) Finally, we note that since the Harsanyi/Selten

theory makes use of payoff comparisons of equilibria, the solution of that theory is not

best reply invariant. We return to this below.

5.2 Risk dominance in 2× 2 games
The core of the Harsanyi/Selten theory of equilibrium selection consists of a procedure

that selects, in each situation in which it is common knowledge among the players that

there are only two viable solution candidates, one of these candidates as the actual

solution for that situation. A simple example of a game with two obvious solution can-

didates (viz. the strict equilibria (a, a) and (ā, ā)) is the stag-hunt game of the left-hand

panel of Figure 10, which is a slight modification of a game first discussed in Aumann
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(1990). (The only reason to discuss this variant is to be able to draw simpler pictures).

a ā

a 4, 4 0, 3

ā 3, 0 2, 2

a ā

a 4, 4 0, x+ 1

ā x+ 1, 0 x, x

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡1

a2 0

a1

0

Figure 10: The stag hunt

The stag hunt from the left-hand panel is a symmetric game with common interests

(Aumann and Sorin (1989)), i.e. it has (a, a) as the unique Pareto-efficient outcome.

Playing a, however, is quite risky: If the opponent plays his alternative equilibrium

strategy ā, the payoff is only zero. Playing ā is much safer: one is guaranteed the

equilibrium payoff and, if the opponent deviates, the payoff is even higher. Harsanyi

and Selten discuss a variant of this game extensively since it is a case where the two

selection criteria that are used in their theory (viz. those of payoff dominance and risk

dominance) point in opposite directions. (See Harsanyi and Selten (1988, pp. 88-89,

and 358-359).) Obviously, if each player could trust the other to play a, he would also

play a, and players clearly prefer such mutual trust to exist. The question, however, is

under which conditions such trust exists and how it can be created if it does not exist.

As Aumann (1990) has argued, preplay communication cannot create trust where it

does not exist initially. In the end, Harsanyi and Selten decide to give precedence to the

payoff dominance criterion, i.e. they assume that rational players can rely on collective

rationality and they select (a, a) in the game of Figure 10. However, the arguments given

are not fully convincing. We will use the game of Figure 10 to illustrate the concept of

risk dominance, which is based on strictly individualistic rationality considerations.
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Intuitively, the equilibrium s risk dominates the equilibrium s̄ if, when players are in

a state of mind where they think that either s or s̄ should be played, they eventually

come to the conclusion that s̄ is too risky and, hence, they should play s. For general

games, risk dominance is defined by means of the tracing procedure. For the special

case of 2-player 2× 2 normal form games with two strict equilibria, the concept is also

given an axiomatic foundation. Before discussing this axiomatization, we first illustrate

how riskiness of an equilibrium can be measured in 2× 2 games.
Let G(a, ā) be the set of all 2-player normal form games in which each player i has the

strategy set {a, ā} available and in which (a, a) and (ā, ā) are strict Nash equilibria. For
g ∈ G(a, ā), we identify a mixed strategy of player i with the probability ai that this
strategy assigns to a and we write āi = 1−ai. We also write di(a) for the loss that player
i incurs when he unilaterally deviates from (a, a) (hence, d1(a) = u1(a, a)−u1(ā, a)) and
we define di(ā) similarly. Note that when player j plays a with probability a∗j given by

a∗j = di(ā)/(di(a) + di(ā)), (5.3)

player i is indifferent between a and ā. Hence, the probability a∗j as in (5.3) represents

the risk that i is willing to take at (ā, ā)) before he finds it optimal to switch to a. In

a symmetric game (such as that of Figure 10) a∗1 = a
∗
2, hence a

∗
1 (resp. ā

∗
1) is a natural

measure of the riskiness of the equilibrium (ā, ā) (resp. (a, a)) and (ā, ā) is more risky if

a∗1 < ā
∗
1, that is, if a

∗
1 <

1
2
. In the game of Figure 10, we have that a∗1 =

2
3
, hence (a, a)

is more risky than (ā, ā). More generally, let us measure the riskiness of an equilibrium

as the sum of the players’ risks. Formally, say that (a, a) risk dominates (ā, ā) in g

(abbreviated a Âg ā) if

a∗1 + a
∗
2 < 1; (5.4)

say that (ā, ā) risk dominates (a, a) (written ā Âg a) if the reverse strict inequality
holds, and say that there is no dominance relationship between (a, a) and (ā, ā)) (written

a ∼g ā) if (5.4) holds with equality. In the game of Figure 10, we have that (ā, ā) risk
dominates (a, a).

To show that these definitions are not “ad hoc”, we now give an axiomatization of risk-

dominance. On the class G(a, ā), Harsanyi and Selten (1988, Section 3.9) characterize

this relation by the following axioms.
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1. (Asymmetry and completeness): For each g exactly one of the following holds:

a Âg ā or ā Âg a or a ∼g ā.

2. (Symmetry): If g is symmetric and player i prefers (a, a) while player j(j 6= i)

prefers (ā, ā), then a ∼g ā.

3. (Best-reply invariance): If g and g0 have the same best-reply correspondence, then

a Âg ā, if and only if a Âg0 ā.

4. (Payoff monotonicity): If g0 results from g by making (a, a) more attractive for

some player i while keeping all other payoffs the same, then a Âg0 ā whenever
a Âg ā or a ∼g ā.

The proof is simple and follows from the observations that

(i) games are best-reply-equivalent if and only if they have the same (a∗1, a
∗
2),

(ii) symmetric games with conflicting interests satisfy (5.4) with equality, and

(iii) increasing ui(a, a) decreases a∗j .

Harsanyi/Selten also give an alternative characterization of risk-dominance. Condition

(5.4) is equivalent to the (Nash) product of players’ deviation losses at (a, a) being larger

than the corresponding Nash product at (ā, ā), hence

d1(a)d2(a) > d1(ā)d2(ā) (5.5)

and, in fact, the original definition is by means of this inequality. Yet another equivalent

characterization is that the area of the stability region of (a, a) (i.e. the set of mixed

strategies against which a is a best response for each player) is larger than the area

of the stability region of (ā, ā). (Obviously, the first area is ā∗1ā
∗
2, the second is a

∗
1a
∗
2.)

For the stag hunt game, the stability regions have been displayed in the middle panel

of Figure 10. (The diagonal represents the line a1 + a2 = 1; the upper left corner of

the diagram is the point a1 = 1, a2 = 1, it corresponds to the upper left corner of the

matrix, and similarly for other points.)
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In Carlsson and VanDamme (1993a), equilibrium selection according to the risk-dominance

criterion is derived from considerations related to uncertainty concerning the payoffs of

the game. These authors assume that players can observe the payoffs in a game only with

some noise. In contrast to Harsanyi’s model that was discussed in Section 2.5, Carlsson

and Van Damme assume that each player is uncertain about both players’ payoffs. Be-

cause of the noise, the actual best-reply structure will not be common knowledge and

as a consequence of this lack of common knowledge, players’ behavior at each observa-

tion may be governed by the behavior at some remote observation (also cf. Rubinstein

(1989)). In the noisy version of the stag hunt game of Figure 8, even though players

may know to a very high degree that (a, a) is the Pareto-dominant equilibrium, they

might be unwilling to play it since each player i might think that j will play ā since i

will think that j will think ... that ā is a dominant action. Hence, even though this

model superficially resembles that of Harsanyi (1973a), it leads to completely different

results.

As a simple and concrete illustration of the model, suppose that it is common knowledge

among the players that payoffs are related to actions as in the right panel g(x) of Figure

10. A priori, players consider all values x ∈ [−1, 4] to be possible and they consider
all such values to be equally likely. (Carlsson and Van Damme (1993a) show that the

conclusion is robust with respect to such distributional assumptions, as well as with

respect to assumptions on the structure of the noise). Note that g(x) ∈ G(a, ā) for
x ∈ (0, 3), that a is a dominant strategy if x < 0 and that ā is dominant if x > 3.

Suppose now that players can observe the actual value of x that prevails only with

some slight noise. Specifically, assume player i observes xi = x+ εei where x, e1, e2 are

independent and ei is uniformly distributed on [−1, 1]. Obviously, if xi < −ε (resp.
xi > 3+ ε), player i will play a (resp. ā) since he knows that that action is dominant at

each actual value of x that corresponds to such an observation. Forcing players to play

their dominant actions at these observations will make a and ā dominant at a larger

set of observations and the process can be continued iteratively. Let x (resp. x̄) be the

supremum (resp. infimum) of the set of observations y for which each player i has a

(resp. ā) as an iteratively dominant action for each xi < y (resp. xi > y). Then there
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must be a player i who is indifferent between a and ā when he observes x (resp. x̄).

Writing aj(xi) for the probability that i assigns to j playing a when he observes xi, we

can write the indifference condition of player i at xi (approximately) as

4aj(xi) = aj(xi) + xi. (5.6)

Now, at xi = x, we have that aj(xi) is at least 12 because of our symmetry assumptions

and since j has a as an iteratively dominant strategy for each xj < x. Consequently,

x ≥ 3
2
. A symmetric argument establishes that x̄ ≤ 3

2
, hence x = x̄ = 3

2
, and each player

i should choose a if he observes xi < 3
2
while he should choose ā if xi > 3

2
. Hence, in the

noisy version of the game, each player should always play the risk-dominant equilibrium

of the game that corresponds to his observation.

To conclude this subsection, we remark that the concept of risk dominance also plays

an important role in the literature that derives Nash equilibrium as a stationary state

of processes of learning or evolution. Even though each Nash equilibrium may be a

stationary state of such a process, occasional experimentation or mutation may result

in only the risk-dominant equilibrium surviving in the long run: This equilibrium has

a larger stability region, hence, a larger basin of attraction, so that the process is more

easily trapped there and mutations have more difficulty to upset it (See Kandori et al.

(1993), Young (1993a,b), Ellison (1993)).

5.3 Risk dominance and the tracing procedure

Let us now consider a more general normal form game g = hA,ui where the players
are uncertain which of two equilibria, s or s̄, should be played. Risk dominance tries to

capture the idea that in this state of confusion the players enter a process of expectation

formation that converges on that equilibrium which is the least risky of the two. (Note

that a player i with si = s̄i is not confused at all. Harsanyi and Selten first eliminate all

such players before making risk comparisons. For the remaining players they similarly

delete strategies not in the formation spanned by s and s̄ since these are never best

responses, no matter what expectations the players have. To the smaller game that

results in this way, one should then first apply the decomposition and reduction steps
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from Section 5.2. We’ll assume that all these transformations have been made and we

will denote the resulting game again by g.)

Harsanyi and Selten view the rational formation of expectations as a two-stage process.

In the first stage, players form preliminary expectations which are based on the struc-

ture of the game. These preliminary expectations take the form of a mixed strategy

vector s0 for the game. On the basis of s0, players can already form plans about how

to play the game. A naive plan would be for each player to play the best response

against s0, but, of course, these plans are not necessarily consistent with the prelimi-

nary expectations. The second stage of the expectation formation process then consists

of a procedure that gradually adjusts plans and expectations until they are consistent

and yield an equilibrium of the game g. Harsanyi and Selten actually make use of two

adjustment processes, the linear tracing procedure T and the logarithmic tracing pro-

cedure T̃ . Formally, each of these is a map that assigns to a mixed strategy vector s0

exactly one equilibrium of g. The linear tracing procedure is easier to work with, but it

is not always well-defined. The logarithmic tracing procedure is well-defined and yields

the same outcome as the linear one whenever the latter is well-defined. We now first

discuss these tracing procedures. Thereafter, we return to the question of how to form

the preliminary expectations and how to define risk dominance for general games.

Let g = hA, ui be a normal form game and let p be a vector of mixed strategies for

g, interpreted as the players’ prior expectations. For t ∈ [0, 1] define the game gt,p =
hA, ut,pi by

ut,pi = tui(s) + (1− t)ui(p\si). (5.7)

Hence, for t = 1 the game coincides with g, while g0,p is a trivial game in which each

player’s payoff depends only on this player’s prior expectations, not on what the oppo-

nents are actually doing. Write Γ(p) for the graph of the equilibrium correspondence,

hence

Γ(p) = {(t, s) ∈ [0, 1]× S : s is an equilibrium of gt,p}. (5.8)

In nondegenerate cases, g0,p will have exactly one (and strict) equilibrium s(0, p) and this

equilibrium will remain an equilibrium for sufficiently small t. Let us denote it by s(t, p).
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The linear tracing procedure now consists in following the curve s(t, p) until, at its

endpoint T (p) = s(1, p), an equilibrium of g is reached. Hence, as the tracing procedure

progresses, plans and expectations are continuously adjusted until an equilibrium is

reached. The parameter t may be interpreted as the degree of confidence players have

in the solution s(t, p). Formally, the linear tracing procedure with prior p is well-defined

if the graph Γ(p) contains a unique connected curve that contains endpoints both at

t = 0 and t = 1. In this case, the endpoint T (p) at t = 1 is called the linear trace of p.

(Note the requirement that there be a unique connecting curve. Herings (2000) shows

that there will always be at least one such curve, hence, the procedure is feasible in

principle.)

We can illustrate the procedure by means of the stag hunt game from Figure 10. Write

pi for the prior probability that i plays a. If pi > 2
3
for i = 1, 2, then g0,p has (a, a) as its

unique equilibrium and this strategy pair remains an equilibrium for all t. Furthermore,

for any t ∈ [0, 1], (a, a) is disconnected in Γ(p) from any other equilibrium of gt,p. Hence,
in this case the linear tracing procedure is well-defined and we have T (p) = (a, a).

Similarly, T (p) = (ā, ā) if pi < 2
3
for i = 1, 2. Next, assume p1 < 2

3
and p2 > 2

3
so that

s(0, p) = (a, ā). In this case the initial plans do not constitute an equilibrium of the

final game so that adjustments have to take place along the path. The strategy pair

(a, ā) remains an equilibrium of gt,p as long as

4(1− t)p2 ≥ 2t+ (1− t)(2 + p2) (5.9)

and

(1− t)(2 + p1) + 3t ≥ 4p1(1− t) + 4t. (5.10)

Hence, provided that no player switches before t, player 1 has to switch at the value of

t given by

t/(1− t) = (3p2 − 2)/2 (5.11)

while player 2 has to switch when

t/(1− t) = 2− 3p1. (5.12)
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Assume p1+ p2/2 < 1 so that the t-value determined by (5.11) is smaller than the value

determined by (5.12). Hence, player 1 has to switch first and, following the branch

(a, ā), the linear tracing procedure continues with a branch (ā, ā). Since (ā, ā) is a strict

equilibrium of g, this branch continues until t = 1, hence T (p) = (ā, ā) in this case.

Similarly, T (p) = (a, a) if p1 < 2
3
, p2 >

2
3
and p1 + p2/2 > 1. In the case where p1 > 2

3

and p2 < 2
3
, the linear trace of p follows by symmetry. The results of our computations

are summarized in the left-hand panel of Figure 11.
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Figure 11a: In the interior of Figure 11b: A case where the linear

the shaded area T (p) = (a, a). tracing procedure is not well-defined.

In the interior of the comple-

ment T (p) = (ā, ā).

If p1 < 2
3
, p2 >

2
3
and p1 + p2/2 = 1, then the equations (5.11)-(5.12) determine the

same t-value, hence, both players want to switch at the same time t̃. In this case, the

game g t̃,p is degenerate with equilibria both at (a, a) and at (ā, ā). Now there exists

a path in Γ that connects (a, ā) with (a, a) as well as a path that connects (a, ā) with

(ā, ā). In fact, all three equilibria of g (including the mixed one) are connected to the

equilibrium of g0,p, hence, the linear tracing procedure is not well-defined in this case.

Figure 11b gives a graphical display of this case. (The picture is drawn for the case

where p1 = 1
2
, p2 = 1 and displays the probability of 1 choosing a.)

The logarithmic tracing procedure has been designed to resolve ambiguities such as

those in Figure 11b. For ε ∈ (0, 1], t ∈ [0, 1) and p ∈ S, define the game gε,t,p by means
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of

uε,t,pi (s) = ut,pi (s) + ε(1− t)αi
X
a

ln si(a) (5.13)

where αi is a constant defined by

αi = max
s
[max
s0i
ui(s\s0i)−min

s0i
ui(s\s0i)]. (5.14)

Hence, uε,t,pi (s) results from adding a logarithmic penalty term to ut,pi (s). This term

ensures that all equilibria are completely mixed and that there is a unique equilibrium

s(ε, 0, p) if t = 0. Write Γ̃(p) for the graph of the equilibrium correspondence

Γ̃(p) = {(ε, t, s) ∈ (0, 1]× [0, 1)× S : s is an equilibrium of gε,t,p}. (5.15)

Γ̃(p) is the zero set of a polynomial and, hence, is an algebraic set. Loosely speaking,

the logarithmic tracing procedure consists of following, for each ε > 0, the analytic con-

tinuation s(ε, t, p) of s(ε, 0, p) till t = 1 and then taking the limit, as ε → 0, of the

end points. Harsanyi and Selten (1988) and Harsanyi (1975) claim that this construc-

tion can indeed be carried out, but Schanuel et al. (1991) pointed to some difficulties

in this construction: The analytic continuation need not be a curve and there is no

reason for the limit to exist. Fortunately, these authors also showed that, apart from

a finite set E of ε-values, the construction proposed by Harsanyi and Selten is indeed

feasible. Specifically, if ε 6∈ E, then there exists a unique analytic curve in Γ̃(p) that
contains s(ε, 0, p). If we write s(ε, t, p) for the strategy component of this curve, then

T̃ (p) = lim
ε↓0
lim
t→1
s(ε, t, p) exists. T̃ (p) is called the logarithmic trace of p. Hence, the

logarithmic tracing procedure is well-defined. Furthermore, Schanuel et al. (1991) show

that there exists a connected curve in Γ(p) connecting T̃ (p) to an equilibrium in g0,p

implying that T̃ (p) = T (p) whenever the latter is well-defined. Hence, we have

Theorem 13 (Harsanyi (1975), Schanuel et al. (1991)). The logarithmic tracing pro-

cedure T̃ is well-defined. The linear tracing procedure T is well-defined for almost all

priors and T̃ (p) = T (p) whenever the latter is well-defined.
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The logarithmic penalty term occurring in (5.13) gives players an incentive to use com-

pletely mixed strategies. It has the consequence that in Figure 11b the interior mixed

strategy path is approximated as ε→ 0. Hence, if p is on the south-east boundary of the

shaded region in Figure 11a, then T̃ (p) is the mixed strategy equilibrium of the game g.

We finally come to the construction of the prior probability distribution p used in the risk

dominance comparison between s and s̄. According to Harsanyi and Selten, each player

i will initially assume that his opponents already know whether s or s̄ is the solution.

Player i will assign a subjective probability zi to the solution being s and a probability

z̄i = 1 − zi to the solution being s̄. Given his beliefs zi player i will then choose a
best response bzii to the correlated strategy zis−i + z̄is̄−i of his opponents. (In case of

multiple best responses, i chooses all of them with the same probability.) An opponent

j of player i is assumed not to know i’s subjective probability zi; however, j knows

that i is following the above reasoning process. Applying the principle of insufficient

reasoning, Harsanyi/Selten assume that j considers all values of zi to be equally likely,

hence, j considers zi to be uniformly distributed on [0, 1]. Consequently, j believes that

i will play ai ∈ Ai with a probability given by

pi(ai) =

Z
bzii (ai)dzi. (5.16)

Equation (5.16) determines the players’ prior expectations p to be used for risk-dominance

comparison between s and s̄. If T̃ (p) = s (resp. T̃ (p) = s̄) then s is said to risk dominate

s̄ (resp. s̄ risk dominates s). If T̃ (p) 6∈ {s, s̄}, neither equilibrium risk dominates the

other. The reader may verify that for 2 × 2 games this definition of risk dominance is
in agreement with the one given in the previous section. For example, in the stag hunt

game from Figure 8 we have that bzii (a) = 1 if zi >
2
3
and bzii (a) = 0 if zi <

2
3
, hence

pi(a) =
1
3
. Consequently, p lies in the non-shaded region in Figure 11a and T (p) = (ā, ā),

hence, (ā, ā) risk dominates (a, a).

Unfortunately, for games larger than 2 × 2, the risk dominance relation need not be
transitive (see Harsanyi and Selten (1988, Figure 3.25) for an example) and selection

on the basis of this criterion need not be in agreement with selection on the basis of

stability with respect to payoff perturbations (Carlsson and Van Damme (1993b)). To
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illustrate the latter, consider the n-player stag hunt game in which each player i has the

strategy set {a, ā}. A player choosing a gets the payoff 1 if all players choose a, and 0
otherwise. A player choosing ā gets the payoff x ∈ (0, 1) irrespective of what the others
do. There are two strict Nash equilibria, viz. “all a” and “all ā”. If player i assigns

prior probability z to his opponents playing the former, then he will play a if z > x,

hence, pi(a) = 1 − x according to (5.16). Consequently, the risk-dominant solution is
“all a” if

(1− x)n−1 > x (5.17)

and it is “all ā” if the reverse strict inequality is satisfied. On the other hand, Carlsson

and Van Damme (1993b) derive that, whenever there is slight payoff uncertainty, a

player should play a if 1
n
> x. It is interesting to note that this n-person stag hunt

game has a potential (cf. Section 2.3) and that the solution identified by Carlsson/Van

Damme maximizes the potential. More generally, suppose that, when there are k players

choosing a, the payoff to a player choosing a equals f(k) (with f(0) = 0, f(n) = 1) and

that the payoff to a player choosing ā equals x ∈ (0, 1). Then the function p that assigns
to each outcome in which exactly k players cooperate the value

p(k) =
kX
l=1

[f(l)− x] (5.18)

is an exact potential for the game. “All a” maximizes the potential if and only if
kP
l=1

f(l)/n > x and this condition is identical to the one that Carlsson/Van Damme

derive for a to be optimal in their model.

To conclude this subsection, we remark that, in order to derive (5.16), it was assumed

that player i’s uncertainty can be represented by a correlated strategy of the opponents.

Güth (1985) argues that such correlated beliefs may reflect the strategic aspects rather

poorly and he gives an example to show that such a correlated belief may lead to

counterintuitive results. Güth suggests computing the prior as above, save by starting

from the assumption that i believes j 6= i to play zjsj + z̄j s̄j with zj uniform on [0, 1]

and different z’s being independent.
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5.4 Risk dominance and payoff dominance

We already encountered the fundamental conflict between risk dominance and payoff

dominance when discussing the stag hunt game in Section 5.2 (Figure 10). In that

game, the equilibrium (a, a) Pareto dominates the equilibrium (a, a), but the latter is

risk dominant. In cases of such conflict, Harsanyi/Selten have given precedence to the

payoff dominance criterion, but their arguments for doing so are not compelling, as they

indeed admit in the postscript of their book, when they discuss Aumann’s argument (also

already mentioned in Section 5.2) that pre-play communication cannot make a difference

in this game. After all, no matter what a player intends to play he will always attempt to

induce the other to play a as he always benefits from this. Knowing this, the opponent

cannot attach specific meaning to the proposal to play (a, a), communication cannot

change a player’s beliefs about what the opponent will do and, hence, communication

can make no difference to the outcome of the game (Aumann (1990)). As Harsanyi and

Selten (1988, p. 359) write “This shows that in general we cannot expect the players

to implement payoff dominance unless, from the very beginning, payoff dominance is

part of the rationality concept they are using. Free communication among the players

in itself might not help. Thus if one feels that payoff dominance is an essential aspect

of game-theoretic rationality, then one must explicitly incorporate it into one’s concept

of rationality”.

Several equilibrium concepts exist that explicity incorporate such considerations. The

most demanding concept is Aumann’s (1959) notion of a strong equilibrium: it requires

that no coalition can deviate in a way that makes all its members better off. Already

in simple examples such as the prisoners’ dilemma, this concept generates an empty

set of outcomes. (In fact, generically all Nash equilibria are inefficient (see Dubey

(1986)).) Less demanding is the idea that the grand coalition not be able to renegotiate

to a more attractive stable outcome. This idea underlies the concept of renegotiation-

proof equilibrium from the literature on repeated games (see Bernheim and Ray (1989),

Farrell and Maskin (1989) and Van Damme (1988, 1989a)). Bernheim et al. (1987) have

proposed the interesting concept of coalition-proof Nash equilibrium as a formalization

of the requirement that no subcoalition should be able to profitably deviate to a strategy
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vector that is stable with respect to further renegotiation. The concept is defined for all

normal form games and the formal definition is by induction on the number of players.

For a one-person game any payoff-maximizing action is defined to be coalition-proof.

For an I-person game, a strategy profile s is said to be weakly coalition-proof, if, for

any proper subcoalition coalition C of I, the strategy profile sC is coalition-proof in the

reduced game in which the complement C is restricted to play sC, and s is said to be

coalition-proof if there is no other weakly-coalition proof profile s0 that strictly Pareto

dominates it. For 2-player games, coalition-proof equilibria exist, but existence for

larger games is not guaranteed. Furthermore, coalition-proof equilibria may be Pareto

dominated by other equilibria.

The tension between “global” payoff dominance and “local” efficiency was already

pointed out in Harsanyi and Selten (1988): an agreement on a Pareto-efficient equi-

librium may not be self-enforcing since, with the agreement in place, and accepting the

logic of the concept, a subcoalition may deviate to an even more profitable agreement.

The following provides a simple example. Consider the 3-player game g in which player

3 first decides whether to take up an outside option T (which yields all players the payoff

1) or to let players 1 and 2 play a subgame in which the payoffs are as in Figure 12.

a ā

a 2, 2, 2 0, 0, 0

ā 0, 0, 0 3, 3, 0

Figure 12: Renegotiation as a constraint

The game g from Figure 12 has two Nash equilibrium outcomes. In the first, player 3

chooses T (in the belief that 1 and 2 will choose ā with sufficiently high probability); in

the second, player 3 chooses p, i.e. he gives the move to players 1 and 2, who play (a, a).

Both outcomes are subgame perfect (even stable) and the equilibrium (a, a, p) Pareto

dominates the equilibrium T . At the beginning of the game it seems in the interest of

all players to play (a, a, p). However, once player 3 has made his move, his interests have

become strategically irrelevant and it is in the interest of players 1 and 2 to renegotiate

to (ā, ā).
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Although the above argument was couched in terms of the extensive form of the game,

it is equally relevant for the case in which the game is given in strategic form, i.e. when

players have to move simultaneously. After agreeing to play (a, a, p), players 1 and 2

could secretly get together and arrange a joint deviation to (ā, ā). This deviation is in

their interest and it is stable since no further deviations by subgroups are profitable.

Hence, the profile (a, a, p) is not coalition-proof.

The reader may argue that these “cooperative refinements” in which coalitions of play-

ers are allowed to deviate jointly have no place in the theory of strategic equilibrium,

and that, as suggested in Nash (1953), it is preferable to stay squarely within the

non-cooperative framework and to fully incorporate possibilities for communication and

cooperation in the game rather than in the solution concept. The present author agrees

with that view. The above discussion has been included to show that, while it is tempting

to argue that equilibria that are Pareto-inferior should be discarded, this view encoun-

ters difficulties and may not stand up to closer scrutinity. Nevertheless, the shortcut

may sometimes yield valuable insights. The interested reader is referred to Bernheim

and Whinston (1987) for some applications using the shortcut of coalition-proofness.

5.5 Applications and variations

Nash (1953) already noted the need for a theory of equilibrium selection for the study

of bargaining. He wrote: “Thus the equilibrium points do not lead us immediately to

a solution of the game. But if we discriminate between them by studying their relative

stabilities we can escape from this troublesome nonuniqueness” (Nash (1953, pp. 131-

132)). Nash studied 2-person bargaining games in which the players simultaneously

make payoff demands, and in which each player receives his demand if and only if the

pair of demands is feasible. Since each pair that is just compatible (i.e. is Pareto

optimal) is a strict equilibrium, there are multiple equilibria. Using a perturbation

argument, Nash suggested taking that equilibrium in which the product of the utility

gains is largest as the solution of the game. The desire to have a solution with this

“Nash product property” has been an important guiding principle for Harsanyi and

Selten when developing their theory (cf. (5.5)). One of the first applications of that
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theory was to unanimity games, i.e. games in which each player’s payoff is zero unless

all players simultaneously choose the same alternative. As the reader can easily verify,

the Harsanyi/Selten solution of such a game is indeed the outcome in which the product

of the payoffs is largest, provided that there is such a unique maximizing outcome.

Another early application of the theory was to market entry games (Selten and Güth

(1982)). In such a game there are I players who simultaneously decide whether to enter

a market or not. If k players enter, the payoff to a player i that enters is π(k)− ci, while
his payoff is zero otherwise (π is a decreasing function). The Harsanyi/Selten solution

prescribes entry of the players with the lowest entry costs up to the point where entry

becomes unprofitable.

The Harsanyi/Selten theory has been extensively applied to bargaining problems (cf.

Harsanyi and Selten (1988, Chs. 6-9), Harsanyi (1980, 1982), Leopold-Wildenburger

(1985), Selten and Güth (1991), Selten and Leopold (1983)). Such problems are mod-

elled as unanimity games, i.e. a set of possible agreements is specified, players simul-

taneously choose an agreement and an agreement is implemented if and only if it is

chosen by all players. In case there is no agreement, trade does not take place. For

example, consider bargaining between two risk-neutral players about how to divide one

dollar and suppose that one of the players, say player 1, has an outside option of α.

The Harsanyi/Selten solution allocates max(
√
α, 1

2
) to player 1 and the rest to player 2.

Hence, the outside option influences the outcome only if it is sufficiently high (Harsanyi

and Selten (1988, Ch. 6)). As another example, consider bargaining between one seller

and n identical buyers about the sale of an indivisible object. If the seller’s value is 0

and each buyer’s value is 1, the Harsanyi/Selten solution is that each player proposes a

sale at the price p(n) = (2n − 1)/(2n − 1 + n).
Harsanyi and Selten (1988, Chs. 8 and 9) apply the theory to simple bargaining games

with incomplete information. Players bargain about how to divide one dollar; if there is

disagreement, a player receives his conflict payoff, which may be either 0 or x (both with

probability 1
2
)) and which is private information. In the case of one-sided incomplete

information (it is common knowledge that player 1’s conflict payoff is zero), player 1

proposes that he get a share x(α) of the cake, where x(α) is some decreasing square root
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function of α with x(0) = 50. The weak type of player 2 (i.e. the one with conflict payoff

0) proposes that player 1 get x(α), while the strong type proposes x(α) if α < α∗(≈ 81)
and 0 in case α > α∗. Hence, the bargaining outcome may be ex post inefficient.

Güth and Selten (1991) consider a simple version of Akerlof’s lemons problem (Akerlof

(1970)). A seller and a buyer are bargaining about the price of an object of art, which

may be either worth 0 to each of them (it is a forgery) or which may be worth 1 to the

seller and v > 1 to the buyer. The seller knows whether the object is original or fake,

but the buyer only knows that both possibilities have positive probability. The solution

either is disagreement, or exploitation of the buyer by the seller (i.e. the price equals

the buyer’s expected value), or some compromise in which the buyer bears a greater

part of the fake risk than the seller does. At some parameter values, the solution (the

price) changes discontinuously, and Güth/Selten admit that they cannot give plausible

intuitive interpretations for these jumps.

Van Damme and Güth (1991a,b) apply the Harsanyi/Selten theory to signalling games.

In Van Damme and Güth (1991a) the most simple version of the Spence (1973) sig-

nalling game is considered. There are two types of workers, one productive, the other

unproductive, who differ in their education costs and who can use the education level

to signal their type to uninformed employers who compete in prices à la Bertrand. It

turns out that the Harsanyi/Selten solution coincides with the E2-equilibrium that was

proposed in Wilson (1977). Hence, the solution is the sequential equilibrium that is

most preferred by the high quality worker, and this worker signals his type if and only

if signalling yields higher utility than pooling with the unproductive worker does. It is

worth remarking that this solution is obtained without invoking payoff dominance. Note

that the solution is again discontinuous in the parameter of the problem, i.e. in the ex

ante probability that the worker is productive. The discontinuity arises at points where

a different element of the Harsanyi/Selten solution procedure has to be invoked. Specif-

ically, if the probability of the worker being unproductive is small, then there is only

one primitive formation and this contains only the Pareto-optimal pooling equilibrium.

As soon as this probability exceeds a certain threshold, however, also the formation

spanned by the Pareto-optimal separating equilibrium is primitive, and, since the sepa-
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rating equilibrium risk dominates the pooling equilibrium, the solution is separating in

this case.

We conclude this subsection by mentioning some variations of the Harsanyi/Selten the-

ory that have recently been proposed. Güth and Kalkofen (1989) propose the ESBORA

theory, whose main difference to the Harsanyi/Selten theory is that the (intransitive)

risk dominance relation is replaced by the transitive relation of resistance dominance.

The latter takes the intensity of the dominance relation into account. Formally, given

two equilibria s and s0, define player i’s resistance at s against s0 as the largest probabil-

ity z such that, when each player j 6= i plays (1−z)sj+zs0j, player i still prefers si to s0i.
Güth and Kalkofen propose ways to aggregate these individual resistances into a resis-

tance of s against s0 which can be measured by a number r(s, s0). The resistance against

s0 can then be represented by the vector R(s0) = hr(s, s0)is and Güth/Kalkofen propose
to select that equilibrium s0 for which the vector R(s0), written in nonincreasing order,

is lexicographically minimal. At present the ESBORA theory is still incomplete: The

individual resistances can be aggregated in various ways and the solution may depend

in an essential way on which aggregation procedure is adopted, as examples in Güth

and Kalkofen (1989) show (see also Güth (1992) for different aggregation procedures).

For a restricted class of games (specifically, bipolar games with linear incentives), Selten

(1995) proposes a set of axioms that determine a unique rule to aggregate the players

individual resistances into an overall measure of resistance (or risk) dominance. For 2×2
games, selection on the basis of this measure is in agreement with selection as in Section

5.2, but for larger games, this need no longer be true. In fact, for 2-player games with

incomplete information, selection according to the measure proposed in Selten (1995)

has close relations with selection according to the “Generalized Nash product” as in

Harsanyi and Selten (1972).

Finally, we mention that Harsanyi (1995) proposes to replace the bilateral risk compar-

isons between pairs of equilibria by a multilateral comparison involving all equilibria

that directly identifies the least risky of all of them. He also proposes not to make

use of payoff comparisons, a suggestion that brings us back the to fundamental conflict

between payoff dominance and risk dominance that was discussed in Section 5.4.
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5.6 Final Remark

We end this section and chapter by mentioning a result from Norde et al. (1996) that

puts all the attempts to select a unique equilibrium in a different perspective. Recall

that in Section 2 we discussed the axiomatization of Nash equilibrium using the concept

of consistency, i.e. the idea that a solution of a game should induce a solution of any

reduced game in which some players are committed to play the solution. Norde et al.

(1996) show that if s is a Nash equilibrium of a game g, g can be embedded in a larger

game that only has s as an equilibrium, consequently consistency is incompatible with

equilibrium selection. More precisely, Norde et al. (1996) show that the only solution

concept that satisfies consistency, nonemptiness and one-person rationality is the Nash

concept itself, so that not only equilibrium selection, but even the attempt to refine the

Nash concept is frustrated if one insists on consistency.
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