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Preface

About five years ago I completed my diploma project about computer chess at
the University of Applied Sciences in Friedberg, Germany. Immediately after-
wards I continued in 2004 with the R&D of my computer-chess engine Loop.

In 2005 I started my Ph.D. project ”New Architectures in Computer Chess” at
the Maastricht University. In the first year of my R&D I concentrated on the
redesign of a computer-chess architecture for 32-bit computer environments. I
developed more efficient search methods and more precise evaluation functions
in order to carry out my R&D within the scope of a state-of-the-art computer-
chess environment.

In fall 2006 the development of my new 32-bit computer-chess architecture was
completed. With the opening book by Gerhard Sonnabend and the hardware
provided by Clemens Keck my computer-chess engine Loop Leiden achieved
the 2nd place behind Rybka and before Hiarcs X MP at the 26th Open Dutch
Computer-Chess Championship 2006 in Leiden (NL) (see Appendix C.1).

In 2007, I started the next R&D phase on the basis of this computer-chess engine.
The focus of this phase was on the development of a 64-bit computer-chess
architecture that should be used within the scope of a quad-core computer-chess
engine. The new 64-bit computer-chess engine, Loop Amsterdam, achieved
the 3rd place behind Rybka and Zappa but before Shredder at the 15th World
Computer-Chess Championship 2007 in Amsterdam (NL) (see Appendix C.2).

For the persons who continuously supported me some words of gratitude are ap-
propriate. In particular, I am grateful to my supervisor Professor Jaap van den
Herik who brought me with firm guidance to this success. He stimulated me to
continue the R&D of my computer-chess engine Loop Chess and motivated me
to write this thesis. In addition, he set up the contact to the company Nintendo
in 2007 which implemented my source codes successfully in their commercial
product Wii Chess. Moreover, I would like to thank my daily advisor dr. Jos
Uiterwijk for the many crucial suggestions and tips during the reading of my
thesis.

My thanks goes also to Dr. Christian Donninger (Chrilly) for his advisory input
during the development of a parallel search engine and to Tord Romstad for his
assistance in generating magic multipliers. Gerhard Sonnabend and Clemens
Keck helped me in the experiments that lasted many months and particularly in
the preparation for two important computer-chess championships, Great Work!
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Finally, I am grateful to Viktoria for her endurance and for her help on trans-
lating the contents of the thesis. I feel great to my parents: in the thesis they
see the results of their education.

Fritz Reul, 2009
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Chapter 1

Introduction

Computer chess is one of the oldest research areas in artificial intelligence [52,
55]. Although the playing strength of the best computer-chess engines has
surpassed the playing strength of the human World Chess Champion, computer
chess is still a challenging and intriguing research area.1 The main issue is the
complexity of chess knowledge. Therefore, the main research objective is: how
can we develop new computer-chess architectures that adequately deal with the
complex chess knowledge.

This thesis analyses and derives the most important requirements, objectives,
rules, and theories for the development of computer-chess architectures. Apart
from theoretical research and scientific scrutiny, the relation of our research to
the computer-chess architecture is established by the implementation of algo-
rithms. We do not consider any theory in its own preserve. Every theory or rule
is always considered in a complex context in close relation to the other elements
of a state-of-the-art computer-chess architecture.

This chapter is structured as follows. Section 1.1 introduces the notion of ar-
chitectures in computer chess. Section 1.2 contains preliminary considerations.
The problem statement and three research questions are given in Section 1.3.
Section 1.4 discusses briefly the research methodology. Section 1.5 provides the
background information of the engine. Section 1.6 gives the thesis overview.

1.1 Architectures in Computer Chess

The computer-chess architecture together with the design of search algorithms
and the evaluation algorithms (and other high-level algorithms) [40] are the
basis for a state-of-the-art and strong computer-chess engine. In this thesis
the development of a computer-chess architecture should not begin until the
most important requirements and objectives of the computer-chess engine have
been exactly defined and determined. Computer-chess architectures that are
developed only for a single objective have proven to be insufficient within the
complex scope of a computer-chess engine. Consequently, it is not adequate

1In 1997 Kasparov was defeated by the chess machine Deep Blue which played on a
supercomputer. In 2006 Kramnik was defeated by the computer-chess engine Deep Fritz.

1



2 CHAPTER 1. INTRODUCTION

to consider specific qualities of a computer-chess architecture separately and to
draw conclusions from that. Hyatt [25] has already recognized this issue and
formulated it as follows:

”If move generation and attack detection were the most time-consuming
parts of a typical chess program, the 0x88 approach would be difficult to
improve on.”2

Computer-Chess Architecture and Computer-Chess Engine

We remark that the elements of a typical computer-chess architecture have a
deterministic origin and compute exact results, such as (1) move information
(→ move generators), (2) attack information (→ attack detectors), (3) board
information (→ doing and undoing moves), and (4) square information (→
static exchange evaluator). Furthermore, our computer-chess architecture is to
be understood as a module implementing (1) the basic board representation,
(2) the basic piece representation, and (3) the elementary algorithms. Further
details and a comparison with other functions and modules of a computer-chess
engine are discussed in Section 2.2.

There is a clear difference between a computer-chess engine and a computer-
chess architecture. A computer-chess engine is the composition of (1) the
computer-chess architecture, (2) the sequential and parallel search, (3) the static
and interactive evaluation, (4) the transposition tables, (5) the move ordering
algorithms, (6) the time management, and (7) the user interface. A computer-
chess architecture composes all algorithms and data structures of a computer-
chess engine as mentioned above.

Chess Knowledge

The complexity of chess knowledge increases disproportionately in relation to
the game performance expected to be achieved through further development of a
computer-chess engine. Whereas only some years ago (1985 to 1996) computer-
chess engines, such as GNU-Chess [12], implemented a central move generator,
nowadays at least four specific move generators are used (see, e.g., Fruit by
Letouzey [38], Glaurung by Romstad [49]). This increase of complexity (in
move generation) is also seen in the fields of (1) evaluation [16, 32], (2) search,
and (3) parallelising and multi-core programming [20, 61].

A review of the version histories of known computer-chess engines clearly shows
that the increase of complexity requires the use of stronger computer-chess ar-
chitectures. We provide two examples. First, version 1.2.1 of Glaurung [58]
was replaced by a clearly stronger version 2.1.3 This stronger version imple-
ments a completely new computer-chess architecture with a new chess-program
design. Second, Letouzey claimed to have developed a new computer-chess ar-
chitecture in order to be able to improve his chess engine and to introduce an
alternative approach to Rotated Bitboards [39].4

2For further information on the 0x88 approach refer to [42].
3Tord Romstad is the author of the open source computer-chess engine Glaurung.
4Fabien Letouzey is the author of the computer-chess engine Fruit which scored the 2nd

place at the 13th World Computer-Chess Championship, Reykjavik 2005.
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These are only two examples, for which the research and development of a new
computer-chess architecture can be justified. In general, we may state that
(1) higher computing speed leads to a performance increase of the computer-
chess engine without any trade-off, and that (2) the reduction of the CPU time
(≤ 50%) is approximately proportional to the measurable performance increase
in ELO [59].

Obviously, straightforward and robust data structures of a computer-chess ar-
chitecture reduce the test and debug phase of a computer-chess engine. The
main advantage of such data structures lies in their simplicity and ease, and
the possibility to implement specific and complex chess knowledge in a more
compact and transparent way. Rajlich [45] defined chess knowledge very aptly
as follows:5

”Chess knowledge wins games. If it does not, it is no knowledge.”

The computer-chess architectures, which are introduced and discussed in the
following chapters, have been successfully tested. Apart from the countless
private and public online computer-chess tournaments, the computer-chess ar-
chitectures discussed in this thesis proved themselves by scoring the 2nd place at
the 26th Open Dutch Computer-Chess Championship, Leiden (NL) 2006 and the
3rd place at the 15th World Computer-Chess Championship, Amsterdam (NL)
2007. The successes in the tournaments achieved by Loop Leiden 2006 and
Loop Amsterdam 2007 are predominantly the result from the computer-chess
architectures employed. The development of these computer-chess architectures
lasted four years in total.

Without these technological developments further implementations of complex
data structures (→ parallelising and multi-core programming, chess knowledge,
etc.) would hardly have been possible. In spite of that, only an excerpt from
the most interesting and scientifically most valuable computer-chess architec-
tures, technologies, and algorithms can be presented within the scope of this
thesis. Further developments often differ only in minor details and are based on
approaches similar to those introduced here.

1.2 Preliminary Considerations

The development of a computer-chess architecture is a rather laborious and ex-
tensive process. The main reason is the high complexity of the technologies,
which are at the core of a computer-chess engine. Here, the main requirement
is the harmonious interplay of these technologies. Thus, a computer-chess ar-
chitecture can hardly be developed from scratch by a single person. As a result,
technologies presented and developed in this thesis are also based on external
developments and implementations. However, it is often not possible to trace
back the initial sources and the original development of a particular technology.
It goes without saying that we will credit all persons who are traceable, even
by a posting only (see below).

5Vasik Rajlich is the author of the computer-chess engine Rybka. His computer-chess
engine won the title of Computer-Chess World Champion twice, in Amsterdam 2007 and
Beijing 2008.



4 CHAPTER 1. INTRODUCTION

In this thesis we predominantly refer to current discussions in computer-chess
forums (→ Winboard Forum [2] and Computer-Chess Club [1]). Older litera-
ture and references, which indeed form a basis for the new development, are
rarely used. This thesis also does not aim at the explicit consideration of known
computer-chess architectures, such as Rotated Bitboards [11, 27] or the 0x88
representation [42]. Many a reference used in this thesis is not available in
a scientifically elaborate form. This includes personal conversations with pro-
grammers [15, 39, 48] and the exchange of source codes as well as discussions via
email. In this way the contents of this thesis can be regarded to be on a state-of-
the-art level of the research and development in the field of the computer-chess
architectures.

For reasons mentioned above, the number of the scientifically referred sources,
such as books, book chapters, and journal publications is fewer than in an
ordinary thesis. This thesis will make an attempt to refer as much as possible
to researchers, who, owing to intensive development work, have not published
their intellectual asset up to now.

1.3 Problem Statement and Research Questions

The introduction of Section 1.1 clearly stipulates which three kinds of require-
ments for the development of computer-chess architectures must be met.

1. Unlimited implementation of chess knowledge. The success of a
computer-chess engine highly depends on the kind of implementation of
complex data structures and chess knowledge.

2. Higher computing speed. The performance of the computer-chess ar-
chitecture should be efficient. Here we note that a higher overall perfor-
mance also results from a higher computing speed.

3. Minimal overhead. The data structures of the computer-chess archi-
tecture should be (1) as straightforward as possible and (2) as compact
as possible during the implementation. It is important that the data of
the computer-chess architecture are managed in a non-redundant way (at
least, as much as possible) in order to minimise unnecessary overhead.

Based on these requirements, the following problem statement will lead us step
by step through the development and analysis of new computer-chess architec-
tures.

Problem statement: How can we develop new computer-chess ar-
chitectures in such a way that computer-chess engines combine the
requirements on knowledge expressiveness with a maximum of effi-
ciency?

The literature on computer chess is nowadays abundant, even in the subdo-
main of computer-chess architectures. So, all publications and research results
in the latter field cannot be considered and analysed within the scope of this
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thesis. The focus is therefore on the most outstanding and state-of-the-art is-
sues. The different elements of a computer-chess engine (see Section 1.1) often
cannot be separated clearly from each other due to their high complexity. For
instance, the distribution of the search over several processors [20, 26] is based
predominantly on the data structures of the computer-chess architecture, since
information between split nodes [26] has to be exchanged and copied continu-
ously. Many further developments in the field of a computer-chess engine are
closely associated with the computer-chess architecture and are based on these
basic data structures and algorithms.

The focus of this thesis is threefold: (1) on the development and analysis of a
non-bitboard computer-chess architecture, (2) on the development and analysis
of a computer-chess architecture based on magic multiplication and bitboards,
and (3) on the development and analysis of a static exchange evaluator (SEE)
with αβ-approach. The following three research questions will be answered in
this thesis. They will be repeated in the chapters in which we address them. In
these chapters we explain the notions used in full detail. Moreover, the research
questions will be used to answer the problem statement.

Research question 1: To what extent can we develop non-bitboard
computer-chess architectures, which are competitive in speed, sim-
plicity, and ease of implementation?

The first part of this thesis deals with the development and analysis of a complete
computer-chess architecture. It is not based on only one data type, such as a 64-
bit unsigned integer.6 This computer-chess architecture is supposed to meet all
important requirements. Findings gained here can simply be applied to other
board games [7], such as Gothic Chess, 10 × 8 Capablanca Chess, Glinski’s
Hexagonal Chess, or computer Shogi [23] as there is no dependence between the
dimension of a board and a specific integer data type.

Research question 2: To what extent is it possible to use hash
functions and magic multiplications in order to examine bitboards in
computer chess?

In order to answer the second research question, a further computer-chess archi-
tecture must be developed. The implementation of this computer-chess archi-
tecture is based on a perfect mapping function and on 64-bit unsigned integers
for the optimal use of the internal bandwidth [27].

Research question 3: How can we develop an αβ-approach in
order to implement pruning conditions in the domain of static ex-
change evaluation?

The development and analysis of an SEE is a challenging issue. The SEE is
an important module of the computer-chess architecture for the qualitative and
quantitative evaluation of moves and threatened squares. By means of the αβ-
window, on which the static exchange evaluation is based, it is also possible to

6A 64-bit unsigned integer is the data type of the so-called bitboard.
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implement pruning conditions. The benefit of these pruning conditions is the
reduction of an iterative computation. The third research question deals with
the theoretical elements and the implementation of different SEE algorithms.

1.4 Research Methodology

The research methodology is empirical. It consists of six phases. The first phase
is characterised by collecting knowledge on methods and techniques. This is
performed by reading, analysing, and validating to some extent the existing
literature and even more by discussing several issues in internet computer-chess
forums, such as the Computer-Chess Club [1] and the Winboard Forum [2]. The
second phase is investigating the applicability of the methods and techniques
of the first phase and attempting to estimate their relation to the methods and
techniques used. The third phase is designing a new computer-chess architecture
and analysing its possibility at a theoretical level.

In the fourth phase the implementation of the design takes place. Then in the
fifth phase the implementation is tuned and tested by comparing it with the
theoretical results. Finally, in the sixth phase the implementation is tested in
practice, and an evaluation of the performance takes place. This phase is a
real-life phase, since the computer-chess architecture is calibrated with its peers
on the highest level, the world computer-chess championship.

1.5 Background of the Engine

The development of the computer-chess engine Loop started in 2004. The
unlimited implementation of chess knowledge combined with high computing
speed were the main goals of the new computer-chess engines. Apart from
the implementation of state-of-the-art forward pruning techniques, such as null
move [13, 14] and late move reductions [47], the development of new computer-
chess architectures was the most important issue.

At the beginning, these new computer-chess architectures had to perform on
32-bit environments. The computer-chess engine Loop Leiden was the first
chess engine to use detailed piece lists in the interplay with blocker loops. The
main objective was to port this engine onto different state-of-the-art hardware
environments without losses of performance. Furthermore, this new computer-
chess architecture performed better than the widespread technology of Rotated
Bitboards, even on 64-bit computer environments.

With the wide distribution of 64-bit computer environments, it was essential to
develop further computer-chess architectures based on 64-bit unsigned integers
(bitboards). These special computer-chess architectures were developed with
the main objective, which was the maximum of performance on 64-bit envi-
ronments. They are as straightforward as possible and rather compact during
their implementation. But, as opposed to the platform-independent computer-
chess architecture implemented in Loop Leiden, it is not possible to use these
64-bit technologies within the environment of 32-bit hardware and software sys-
tems without a loss of computing speed. The use of hash functions and magic
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multiplications led to a quite efficient examination of bitboards in order to dis-
pense with the rotated-bitboard approach. This resulted in the quite successful
computer-chess engine Loop Amsterdam.

Additionally, the development of an algorithm for the evaluation of moves was
essential in order to gain a better move ordering for further reduction of the
branching factor. This requirement led to a quite interesting tool of the state-of-
the-art computer-chess architecture: the static exchange evaluator. The results
of this algorithm are quite precise. The application of the SEE algorithm is
straightforward and the field of application is enormous (see Section 4.5).

All these techniques and algorithms are designed for the operation within multi-
core computer-chess engines. Loop Leiden is a dual-core computer-chess en-
gine. Loop Amsterdam is a quad-core computer-chess engine. Both computer-
chess engines are based on an advanced shared hash table approach [61].

1.6 Thesis Overview

This thesis contains five chapters. Chapter 1 is a brief and general introduction
of computer-chess architectures. Thereafter the problem statement and three
research questions are formulated. In the course of the thesis every research
question is discussed and answered in a separate chapter.

Chapter 2 answers the first research question. The development of a non-
bitboard computer-chess architecture is carried out on an R&D basis of the
computer-chess engine Loop Leiden 2006 and Loop Express.7 At the begin-
ning of this chapter, profile information of the computer-chess engine Loop will
be discussed. The most important requirements and objectives of the computer-
chess engine can be defined by a more precise evaluation of this profile analysis.

Chapter 3 answers the second research question. The development of the
computer-chess architecture, based on bitboards and perfect hash functions re-
quires the use of a particularly efficient mapping function. This chapter focuses
on the theory and the development of the magic mapping function. With this
mapping function a bit scan and hash algorithms for sliding pieces are developed.
The two algorithms form the basis of the computer-chess architecture, where
the information is stored in 64-bit unsigned integers. Finally, magic multipliers
for a magic mapping function will be generated and examined by a suitable
trial-and-error algorithm and a brute-force approach.

Chapter 4 answers the third research question. After the introduction of the
SEE algorithm, recursive and iterative implementations will be examined. An
αβ-window to control the evaluation is introduced on the basis of an iterative
approach. Due to the new structure of the algorithm, the implementation of
multiple pruning conditions is possible for the first time. Then, the efficiency
of combined pruning conditions is analysed. Additionally, some typical applica-
tions of the SEE in the field of a computer-chess engine are introduced. An SEE
is an important component of the state-of-the-art computer-chess architecture
due to its structure and its deterministic computation.

7Loop Express is the computer-chess engine that was developed for Nintendo Wii Chess.



8 CHAPTER 1. INTRODUCTION

Chapter 5 contains the research conclusions and recommendations for future
research.

This thesis contains three appendices. In Appendix A additional source codes,
which are dealt with in the thesis, are listed. In Appendix B the magic multiplier
sets for Bishops and Rooks according to the experiments in Section 3.8 are given.
Appendix C provides two complete collections of computer-chess games played
by Loop Leiden at the 26th Open Dutch Computer-Chess Championship, Lei-
den (NL) 2006 and Loop Amsterdam at the 15th World Computer-Chess
Championship, Amsterdam (NL) 2007.



Chapter 2

Non-Bitboard Architectures

The main objective of Chapter 2 is to answer the first research question by a
scientific R&D approach of the computer-chess engines Loop Leiden 2006 and
Loop Express. Below we repeat the first research question.

Research question 1: To what extent can we develop non-bitboard
computer-chess architectures, which are competitive in speed, sim-
plicity, and ease of implementation?

The development of the computer-chess architecture is mainly based on the
experiences gained during the development of a computer-chess engine. A defi-
nition of the requirements and objectives is thus hardly possible without suffi-
cient a priori experience (see Section 1.1). For this reason, the development of
a computer-chess architecture in practice is developed mainly through adapta-
tions and extensions. This mostly happens in cooperation with the development
of the search and the evaluation components. The computer-chess architecture
is adjusted to the remaining program structures in many steps which often
overlap. The results of this incremental development are mostly complicated,
redundant, and inconsistent data structures and algorithms. A computer-chess
architecture, which is developed in such a way, is only rarely competitive in
speed, simplicity, and ease of implementation.

The developer of the computer-Shogi engine Spear, Grimbergen [23, page 25]
formulated this issue in the article ”Using Bitboards for Move Generation in
Shogi” quite precisely.1

”Quite a complicated piece of code and an area of the program that I
rather do not touch even if there are some obvious optimizations that can
be implemented.”

Although based on the experiences gained during the development of the Loop

computer-chess β-engines 2005-2006, the 32-bit computer-chess architecture for
Loop Leiden was written from scratch. One of the objectives of this redesigned
engine was a strong and homogeneous data structure, that can also be used in

1Shogi’s search algorithms are similar to the game of chess. However, the game has different
pieces and rules, and is played on a 9 × 9 board.

9
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the environment of a multi-core computer-chess engine (→ multiple threads
or multiple processes). Therefore, we imposed three criteria on the used data
structures.

1. Competitiveness in speed. A high computing performance is to be
gained by efficient computations and minimal management overhead of the
data. Besides the efficient move generation, attack detection, and mobility
evaluation, the incremental expenditure of move simulations (→ do move,
undo move) is to be minimised. Data structures with small redundancy
are needed for that. Unlike in the classical approach of Rotated Bitboards
[11, 27] the data about the chessboard are not managed in a redundant
way.2

2. Simplicity. The basic data structures should be as straightforward as
possible. All elementary storage access, on which the computer-chess ar-
chitecture is based, is almost exclusively implemented by one-dimensional
linear vectors. The most important computations, such as move genera-
tion, attack detection, and mobility evaluation, are realised by means of
arithmetic operations (→ plus, minus, increment, and decrement).

3. Ease of implementation. The development of algorithms is based on
fixed rules. For every kind of attack detection (→ direct attack, indirect
attack, etc.) a specific blocker loop is used (see Section 2.5). All data which
contain information about the chessboard (→ squares) are categorized
unambiguously according to pieces and colours (→ white Pawn, . . ., black
King). The implementation is not based on specific integer data types (→
64-bit unsigned integer), such as Rotated Bitboards or Magic Bitboards
(see Chapter 3) [30], and is thus used more universally.3 No relation
between the size of the board and a specific integer data type exists.

Only when (1) the internal computer chessboard (see Section 2.2), (2) the de-
tailed piece lists (see Section 2.3), and (3) the two blocker loops (see Section 2.5)
are in harmonious interplay, a high-performance framework can be developed.
This framework is not explicitly based on the use of bitboards and is thus im-
plemented more flexibly as the size of the board with n×m > 64 squares can be
chosen almost arbitrarily. For this reason, the developed technologies can also
be used in other chess variants [7] as for example Gothic Chess, 10 × 8 Capa-
blanca Chess, Glinski’s Hexagonal Chess, and in board games such as computer
Shogi.

The chapter is organised as follows. In Section 2.1 an overview of known projects
is given, in which the computer-chess architecture of Loop Leiden, to be in-
troduced in this chapter, is implemented. In Section 2.2 the computer chess-
board design for a non-bitboard computer-chess architecture is developed and

2Bitboards are also called bitsets or bitmaps. This data structure is used to represent the
board in a piece-centric manner inside a computer-chess engine. Each bit represents a game
position on the internal chessboard [35]. Rotated Bitboards make certain operations more
efficient by rotating the bitboard positions by 90 degrees, 45 degrees, and 315 degrees.

3Magic Bitboards is a new and fast alternative to Rotated Bitboards. This technology uses
a perfect hashing algorithm to index an attack bitboard look-up table. For more information
see: http://chessprogramming.wikispaces.com/Magic+Bitboards
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discussed. For this reason, the chessboard and the management of chessboard-
related information play a central role. Based on the investigations in Section
2.3, the administration of information in piece lists is discussed. In Section
2.4 experiments with pieces in lists are carried out. In Section 2.5 two blocker
loops are described, on which all move generations, attack detections, and mo-
bility evaluations of sliding pieces in the computer-chess engine Loop Leiden

are based. Section 2.6 concludes with the experiment with loop iterations. A
summary of the results backed up by an empirical experiment is presented in
Section 2.7. Finally, the first research question is answered.

2.1 Implementation in Two External Projects

The non-bitboard computer-chess architecture, which will be introduced and
examined in this chapter, has been used in two external projects since 2006.
Below, the two projects and the implementations of the non-bitboard computer-
chess architecture will be presented briefly.

2.1.1 The Chess Machine Hydra

The non-bitboard computer-chess architecture, on which Loop Leiden is based,
has been also implemented since 2006 in the chess machine Hydra developed
by Donninger et al.4 Due to the simplicity and the ease of implementation,
this computer-chess architecture could be implemented into the existing Hy-

dra project [17, 18, 19] in a short time. The chess machine could also execute
software-based computations, such as move generation more efficiently. Accord-
ing to a statement by Donninger, the efficiency increase of this computer-chess
architecture was slightly smaller in the chess machine Hydra than in a pure
computer-chess engine. Particularly, this is due to the parallel processing of the
search tree by field programmable arrays (FPGAs) [5], whereby software-based
implementations and optimisations are emphasized less.

2.1.2 Nintendo Wii Chess

The second implementation concerns the Nintendo Wii Project. The imple-
mentation of the non-bitboard computer-chess architecture from Loop Leiden

into the Nintendo project Wii Chess, 2007, proceeded without complications.
The lower performance and the 32-bit bandwidth of Nintendo’s main processor
(codename ”Broadway”) were sufficient to implement the same computer-chess
architecture, such as Loop Leiden, without any restrictions.5 Due to the
smaller main memory, available for the chess engine on the Nintendo system,
almost only memory-efficient one-dimensional look-up tables can be used for
the computer-chess architecture. So, Loop Express has smaller transposition

4For more information about the Hydra project see: http://www.hydrachess.com/
5The main processor is based on the ”PowerPC 750 CL”-architecture and was devel-

oped in a collaboration between IBM and Nintendo. For more information see: http:

//www.mynintendo.de/wii/
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tables and smaller pawn hash tables (see Subsection 2.2.4). The implementa-
tion of the complete computer-chess engine Loop Express into the Wii Chess
project lasted only a few weeks. After an extensive test phase, no problems
were found within the computer-chess architecture.

2.2 Computer Chessboard Design

In this section the internal chessboard is developed. It is the basis for the non-
bitboard computer-chess architecture. The computer chessboard is the central
data structure of the computer-chess architecture as almost all computations
(e.g., move generation and attack detection) have access to this data structure
or their incremental manipulation (do move, undo move). Hence, the internal
computer chessboard will be scrutinized in the further course of this chapter.

The most important issues of the internal computer chessboard design are: (1)
the minimum size of the horizontal board border and (2) the management of
distances and increments via surjective mapping. Surjective mapping means
in this context the mapping of a pair of squares (from-square, to-square) into
a linear vector. The detection of attacks, the evaluation of mobility, and the
generation of moves of sliding pieces (→ captures, non-captures, check threats,
and check evasions) are mainly based on the design of the internal computer
chessboard. The more skillful the arrangement of the squares and the board
border is, the more efficient and straightforward elementary computations can
be executed.

A Profile Analysis

A profile analysis is carried out by means of Loop Leiden to obtain an overview
of the time consumption of the most important functions of a computer-chess
architecture. Below, we summarise (1) move generators, (2) attack detectors,
and (3) functions for move management in a superordinate function. Thus, the
time consumption of elementary functions of the computer-chess architecture
can be measured sufficiently by this profile analysis.

In total, three different measurements were carried out at different game stages.
All three measurements deliver rather similar results. For this reason, only
the results of the first measurement are listed in Table 2.1. The position of
the sample board was adopted from the Queen’s Gambit (ECO = D53) in
round 2 of the game Loop vs. Shredder at the 15th World Computer-Chess
Championship, Amsterdam (NL) 2007.6 The position for the profile analysis
was reached after 7 cXd5 eXd5 (see Appendix C.2).

The results of this measurement (see in Table 2.1) are subdivided into three main
columns. In the first main column the function name and the number of the
function calls are listed. The second main column is the sorting criterion of the
profile analysis. The used CPU time in milliseconds (ms) of a function without
substack is sorted in a descending order. In this case, the net CPU time of
the single functions was measured. In contrast, the results of the measurement

6ECO: Encyclopedia of Chess Openings.
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with substack are entered in the third main column. The gross CPU times
contain the CPU times consumed in reality for all non-search functions; here
all encapsulated function calls are considered. For instance, the functions for
the position evaluation (→ evaluate) encapsulate further evaluation functions
(material evaluation, pawn evaluation, king-safety evaluation, etc.).

A recursive search function consumes almost 100% of the entire CPU time as
the complete computation is encapsulated in its substack. The search functions
search_w (White’s point of view) and search_b (Black’s point of view) are the
implementation of the αβ-principal variation search (PVS). The search func-
tions search_q_w (White’s point of view) and search_q_b (Black’s point of
view) are the implementation of the αβ-quiescence search [4].

The superordinate function cca (computer-chess architecture) encapsulates all
functions of the computer-chess architecture. The actual CPU time consumed
by the computer-chess architecture is the tare CPU time. The net CPU time
indicates only the overhead of 4.6% for the explicit encapsulation in this ex-
periment. Accordingly, the CPU time consumed in reality is approximately
51.7% − 4.6% = 47.1%. This result was confirmed by 46.9% and 42.1% in two
further measurements for the middlegame and the endgame.

Profile Analysis: The Computer-Chess Architecture

without substack with substack

(net) (gross)

func name func calls time (ms) rel (%) time (ms) rel (%)

evaluate 456,012 1,352 10.8 1,881 15.0

search_w 225,312 636 5.1 12,119 96.9

cca 3,401,726 575 4.6 6,463 51.7

search_b 184,500 493 3.9 12,155 97.2

search_q_w 244,021 476 3.8 4,829 38.6

search_q_b 210,814 425 3.4 4,923 39.4

Table 2.1: Profile analysis of the encapsulated computer-chess architecture.

The measured values confirm that the computer-chess architecture within the
scope of a state-of-the-art computer-chess engine together with the evaluation
functions consume most of the CPU time. Also large parts of the evaluation are
based on the computer-chess architecture (recognition of threats, evaluation of
mobility, etc.). Since the evaluation has a non-deterministic origin (see Section
1.1), this is to be considered separately.

This section contains four subsections. In Subsection 2.2.1 we will develop the
computer chessboard representation. In Subsection 2.2.2 distances and incre-
ments within a computer-chess architecture will be defined. In Subsections 2.2.3
and 2.2.4 minimal board borders will be developed in order to introduce fast
and memory-efficient one-dimensional look-up tables.
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2.2.1 Computer Chessboard Representation

Below we discuss two computer-chessboard representations. First we review a
chessboard representation with a border. Due to the extension of the internal
board to an upper and lower as well as left and right board border, the border
squares of the intrinsic 8 × 8 board do not have to be examined separately. If
a piece exceeds the board border, this must be recognised quickly. In the 0x88-
board computer-chess architecture this is gained by masking of the destination
square with the hexadecimal number 88hex = 136. If the destination square
belongs to the internal board (square AND 88hex = 0), it must be checked
additionally whether the destination square is empty.

This necessary condition (square AND 88hex = 0) will be redundant, if the
border of the internal board is examined as a separate border piece. As soon
as a piece leaves the internal 8 × 8 board, it automatically comes to a collision
with a border piece. If a sliding piece collides with a border piece, the sliding
direction is then to be changed.

Second, a computer chessboard without a board border is only used in bitboard-
based computer-chess architectures as the number of squares corresponds with
the number of bits of 64-bit unsigned integers on the chessboard, the so-called
bitboard. In some cases there are also non-bitboard developments which work
without an explicit board border [60]. In most known implementations look-up
tables are used when generating moves which are retrieved recursively. Espe-
cially with sliding pieces, the end of a sliding direction must be recognised easily
so that the change from a sliding direction to the next one is executed with less
computing time. These two-dimensional look-up tables are indeed elegant, how-
ever not particularly efficient.

In the computer-chess engine GNU-Chess and in older versions of Glaurung

two-dimensional look-up tables are used for the generation of moves and the
detection of attacks in relation to a borderless board. The source square of a
piece and the destination square, which was retrieved last, are used to access
the look-up table.

d e s t i n a t i o n s q = l ook up tab l e ( sour ce sq , d e s t i n a t i o n s q ) ;

Only for starting this recursive mechanism the source square is also to be set onto
the place of the destination square. An alternative would be the introduction of a
one-dimensional look-up table to access the very first destination square, in order
to start the recursive mechanism with the two-dimensional look-up table. If a
sliding direction is blocked because of a collision, a further two-dimensional look-
up table will be accessed, which, according to the same recursive mechanism,
contains the first square of a new sliding direction. After first experiments with
the Loop project in 2005 it turned out that this approach was not competitive
in speed.

2.2.2 Distances and Increments

The relation between two squares is quite often evaluated during move genera-
tion, attack detection, and other elementary board operations. To let it happen
in such a way that this evaluation can be carried out as fast as possible, the
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searched information is stored in one-dimensional and two-dimensional look-up
tables. The organisation of the information in one-dimensional look-up tables
is only then possible when (1) the horizontal board border is sufficiently large
and (2) only a relative relation between two squares is required. As soon as
the relation between two squares has an absolute size (→ bijective mapping),
no one-dimensional look-up tables can be used anymore. However, the one-
dimensional look-up tables require considerably less memory and can also be
used more efficiently since the address computation for their access is simpler.

For example, a look-up table for the management of distances or increments
between two squares (→ file distance, rank distance, or square distance) is most
straightforwardly to be realised by a one-dimensional look-up table. Concrete
implementations will be presented in Subsection 2.2.4, after the dimensioning
of the horizontal board borders is defined in Subsection 2.2.3. Below we define
the basics for the dimensioning of the board border.

Distances

The information about distances is mainly used within the scope of evaluation.
File distances are mostly used for the evaluation of attack patterns such as
king-attack evaluation. The file distance describes the absolute distance be-
tween two files (see Equation 2.1) and is no metric with regard to sq1 and sq2

as dfile(sq1, sq2) = 0 ⇔ sq1 = sq2 does not apply [9, pages 602f.]. The rank
distance, similarly to the file distance, describes the absolute distance between
two ranks according to Equation 2.2. Combined file-rank distances, which are
the sum of file distance and rank distance as in Equation 2.3, are not imple-
mented in the computer-chess engine Loop Leiden. Access to look-up tables
for square distances is especially relevant in the endgames to evaluate passed
Pawns and the King-Pawn-King (KPK) endgames [4]. The square distance, as
defined in Equation 2.4, is the maximum of file distance and rank distance, and
is no metric, either.

Definition of Distances and their Bounds

0 ≤ dfile(sq1, sq2) = |file(sq1) − file(sq2)| ≤ 7 (2.1)

0 ≤ drank(sq1, sq2) = |rank(sq1) − rank(sq2)| ≤ 7 (2.2)

0 ≤ dfile rank(sq1, sq2) = dfile(sq1, sq2) + drank(sq1, sq2) ≤ 14 (2.3)

0 ≤ dsquare(sq1, sq2) = max(dfile(sq1, sq2), drank(sq1, sq2)) ≤ 7 (2.4)

Increments

Increments are signed integers, which determine the increment between two
squares, so that a piece can move from a source square to a destination square.
This information is important especially in relation to the recognition of at-
tacks within a non-bitboard computer-chess architecture. Increments only exist
between a source square and a destination square, which can be reached by
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one pseudo-legal move of any piece (→ Knight, King or sliding piece).7 For
the computation of an increment for sliding pieces the difference between two
squares on the internal chessboard is divided by the square distance dsquare ac-
cording to Equation 2.5. For the computation of an increment for the Knight
the difference between two squares on the internal chessboard is used accord-
ing to Equation 2.6. In Equations 2.5 and 2.6 sq2 = destination square and
sq1 = source square.

Definition of Increments

sliding increment(sq2, sq1) =
sq2 − sq1

dsquare(sq2, sq1)
(2.5)

knight increment(sq2, sq1) = sq2 − sq1 (2.6)

This relation between a source square and a destination square is calculated
once and stored in one-dimensional or two-dimensional look-up tables. After
the initialisation and during calculations the required information is retrieved
again from the look-up tables. The information about increments is needed
for the generation of check evasions and checking moves, for the recognition of
attacks and the static exchange evaluation (see Chapter 4). According to the
internal chessboard representation in Figure 2.1 square h6 is represented as entry
115 and square f5 as entry 98. This means that the increment corresponding
to the move Nf5–h6 would be 17.

2.2.3 Minimal Board Borders

For an adequate computer-chess architecture the determination of the size of
the board border is important so that distances and increments can be managed
as non-redundantly as possible. The uniqueness of a mapping can be achieved
only by a minimum size of the horizontal board border. The sum of the right
and left board borders must be greater than the difference between a square on
the a-file and a square on the h-file on the same rank (see Equation 2.7).

Minimal Horizontal Board Border

borderleft + borderright ≥ dsquare(sqa1, sqh1) = 7 (2.7)

The difference between a square on a-file and a square on h-file within an a1h8-
orientated board is seven squares. The right and left board borders must have a
size of at least seven squares so that one-dimensional vectors can be addressed
by a unique mapping. The vertical board border does not have any influence
on the mapping function. In spite of that, the vertical board border (upper and
lower board borders) should be minimal in order to obtain an internal board,
which is as small as possible. The upper and lower board borders are at least

7A pseudo-legal move is a move which can be done, if no friendly piece is on the destination
square and the sliding direction to the destination square is unoccupied.
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2 squares large so that the Knight cannot move over the board border of the
internal chessboard. After the determination of the board border, the internal
chessboard has a minimum dimension of 15 × 12 squares which is shown in
Figure 2.1.
















165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

150 . . . 164

135 A8 B8 C8 D8 E8 F8 G8 H8 149

120 A7 B7 C7 D7 E7 F7 G7 H7 134

105 A6 B6 C6 D6 E6 F7 G6 H6 119

90 . . . A5 B5 C5 D5 E5 F5 G5 H5 . . . 104

75 A4 B4 C4 D4 E4 F4 G4 H4 89

60 A3 B3 C3 D3 E3 F3 G3 H3 74

45 A2 B2 C2 D2 E2 F2 G2 H2 59

30 A1 B1 C1 D1 E1 F1 G1 H1 44

15 . . . 29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
















Figure 2.1: Internal chessboard with minimal borders.

2.2.4 One-dimensional Look-up Tables

In order to retrieve information about distances and increments from one-
dimensional look-up tables a fast mapping function is required. This mapping
function carries out a surjective mapping of two squares into the memory area
of the corresponding look-up table. The mapping is calculated by the sum of
a constant offset (→ const offset) combined with the difference of a source
square (→ sq1) and a destination square (→ sq2). The constant offset must
only guarantee that the calculated vector index is not negative (→ index ≥ 0).
const offset + sqa1 − sqh8 ≥ 0 results from the non-negativity of the index.
According to the board matrix in Figure 2.1 (→ sqa1 = 33 ∧ sqh8 = 145) we
get const offset ≥ sqh8 − sqa1 = 112. Access to the look-up table according to
the calculated index is summarised in Equation 2.8. In spite of the asymmet-
ric board border, it does not matter for the calculation of the constant offset,
whether the left (see Figure 2.1) or the right border is three squares large.

Because of the seven-squares large board border, it is not possible to get from
an edge square of the h-file over the board border to the next edge square of
the a-file as |sq1 − sq2| ≥ 8 applies to the minimum difference between these
edge squares. Therefore, we deal with an surjective mapping. The smallest
possible index can be index = const offset + sqa1 − sqh8 = 0 as in Equation
2.8. The largest possible index can be index = const offset + sqh8 − sqa1 =
224 according to Equation 2.8. It may be concluded that an surjective one-
dimensional look-up table for a board as shown in Figure 2.1 has the memory
capacity of 0 ≤ index ≤ 224 and thus consists of 225 table entries.

Since only the relative relation between two squares to each other can be con-
sidered here, no absolute squares as a result value can be contained in such
one-dimensional look-up tables. Moreover, absolute results must be managed
in two-dimensional look-up tables. Almost all distances and increments can be
managed by these one-dimensional surjective look-up tables within the scope of
the computer-chess architecture.
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The Unique Mapping Function for Vector Access

0 ≤ index := const offset + sq1 − sq2 ≤ 224

⇒ result := vector(index) (2.8)

Four Examples

The look-up table with 225 = 152 table entries for the internal chessboard of
Figure 2.1 has a midpoint in a quadratic arrangement according to the examples
1 to 4 of Figure 2.2 in which all distances and increments are zero. This applies
only then, when sq1 = sq2 (→ source square = destination square). Such a
look-up table for retrieving information about the file distance or the square
distance between two squares within a 12 × 15 chessboard with minimal board
borders would look like as shown in example 1 and 2 of Figure 2.2. Whereas
the matrices for distances are axis-symmetrical (see example 1 of Figure 2.2)
or point-symmetrical (see example 2 of Figure 2.2), the matrices of increment
look-up tables (see examples 3 and 4 of Figure 2.2) have an orientation without
any symmetry. Source square and destination square must not be swapped
therefore.

Look-up Table Access in Practice

The source-code listing of Figure 2.3 shows a straightforward algorithm for the
verification of the legality of a move from the view of White. This algorithm
is used in practice. It is implemented (apart from the processing of two special
cases) in the computer-chess architecture of Loop Leiden and Loop Express.
A king move and en passant move must be examined explicitly and are not
implemented here. This algorithm requires, however, that the current position
is legal and the King of the side, whose turn it is, is not in check. Consequently,
this algorithm is only written for the incremental verification of the legality
of moves. Precisely as for the incremental detection of check threats, one-
dimensional increment look-up tables are used for this algorithm in order to
examine sliding directions between the King and the moving piece. Thus, the
algorithm in the source-code listing of Figure 2.3 is best suitable in order to
demonstrate the use of look-up tables within the scope of the computer-chess
architecture. The sample algorithm works in three steps and checks whether a
pinned piece is trying to move out of its pinning line.

Step 1

In step 1 it is checked, whether a relation between the King square

king square w

and the source square

from=move from (move )
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Example 1: File Distance Matrix





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







7 6 5 . . . 0 . . . 5 6 7

7 6 5 . . . 0 . . . 5 6 7
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.

.

.
.
.
.

.

.

.

7 6 5 . . . 0 . . . 5 6 7

.

.

.
.
.
.

.

.

.

7 6 5 . . . 0 . . . 5 6 7

7 6 5 . . . 0 . . . 5 6 7

7 6 5 . . . 0 . . . 5 6 7
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Example 2: Square Distance Matrix


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

7 7 7 . . . 7 . . . 7 7 7
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7 6 5 . . . 5 . . . 5 6 7

.

.

.
.
.
.

.

.

.
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.

.

.
.
.
.

.

.

.

7 6 5 . . . 5 . . . 5 6 7

7 6 6 . . . 6 . . . 6 6 7

7 7 7 . . . 7 . . . 7 7 7





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
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

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Example 3: Queen Increment Matrix















−14 0 0 . . . −15 . . . 0 0 −16

0 −14 0 . . . −15 . . . 0 −16 0
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.

.

.
.
.
.

.

.

.

1 1 1 . . . 0 . . . −1 −1 −1

.

.

.
.
.
.

.

.

.

0 0 16 . . . 15 . . . 14 0 0

0 16 0 . . . 15 . . . 0 14 0

16 0 0 . . . 15 . . . 0 0 14
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




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Example 4: Knight Increment Matrix


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
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

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


0 . . . 0 0 0 0 0 . . . 0
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.
.
.
.

.

.

.
.
.
.

.

.

.

0 . . . 0 −29 0 −31 0 . . . 0

0 −13 0 0 0 −17 0

0 0 0 0 0 0 0

0 17 0 0 0 13 0

0 . . . 0 31 0 29 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 . . . 0 0 0 0 0 . . . 0





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








Figure 2.2: Distance and increment matrices for surjective one-dimensional look-
up tables.
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exists at all. Only if a relation exists and the destination square

to=move to (move )

is not on the same line, the opponent with a sliding piece can attack the friendly
King.

Step 2

In step 2 it is to be checked, whether the line between the king square and the
source square of the move is not occupied.

Step 3

Subsequently, it is merely checked in step 3, whether in the extension of this
line an opposing

p i e c e i s b l a c k ( p i e c e ( next ) )

sliding attacker

pseudo attack ( p i e c e ( next ) , next , k ing square w )

is hidden.

Look-up Table Access in Practice

bool move i s l e ga l w ( int move ) {
int from ;
int to ;
int i nc ;
int next ;
// ana ly se k ing move and en passant move at f i r s t
i f ( king move (move ) | | en passant move (move ) ) {

// i n s e r t s p e c i a l code f o r v e r i f i c a t i o n of l e g a l i t y here
}
// e x t r a c t the move informat ion
from=move from (move ) ;
to=move to (move ) ;
i nc=queen increment ( king square w , from ) ;
// s t ep 1
i f ( inc == 0) return true ;
i f ( inc == queen increment ( king square w , to ) ) return true ;
// s t ep 2
for ( next=king square w+inc ; p i e c e ( next ) == NONE; next+=inc ) ;
i f ( next != from ) return true ;
// s t ep 3
for ( next+=inc ; p i e c e ( next ) == NONE; next+=inc ) ;
i f ( p i e c e i s b l a c k ( p i e c e ( next ) ) == fa l se ) return true ;
i f ( pseudo attack ( p i e c e ( next ) , next , k ing square w ) ) return fa l se ;
return true ;

}

Figure 2.3: Source-code listing for legality verification of moves.
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2.3 Managing Information with Piece Lists

In the beginning of this chapter the requirements (1) competitiveness in speed,
(2) simplicity, and (3) ease of implementation were imposed on data structures
of the computer-chess architecture. In this section we will develop and present
data structures, which fulfil these requirements in theory and in particular in
practice.

The main issues are (1) the chess pieces and (2) their management as well
as representation. Subsequently, the technologies used in the computer-chess
engine Loop Leiden and Loop Express are introduced. These technologies
and their interplay with the internal computer-chessboard design from Section
2.2 will build the framework of a strong and platform-independent computer-
chess architecture.

This section contains six subsections. In Subsection 2.3.1 pieces and piece flags
are discussed. In Subsection 2.3.2 a variety of piece lists will be presented.
Thereafter in Subsection 2.3.3, we will split up piece lists for light and dark
squares. Scanning pieces will be the issue of Subsection 2.3.4. In Subsection
2.3.5 the incremental piece-list update while doing and undoing moves will be
developed. Finally, in Subsection 2.3.6 we will examine a difficult phenomenon,
while scanning pieces.

2.3.1 Pieces and Piece Flags

The pieces Pawn, Knight, Bishop, Rook, Queen, King and their colours White
or Black are to be marked by unique flag disjunctions. In this way, negative
integers for piece representation can be avoided. Moreover, every piece type
can be recognised independently of its piece colour. With the help of flags it
can also be marked precisely whether a piece is a sliding piece. The flags are
arranged in ascending order depending on the material piece values. Indeed, it
is more efficient to write a specific source code to deal with every piece type.
The disjunction of flags, however, enables the use of a more general and a more
compact source code. Below we discuss both issues: (1) basic flags and (2) flag
disjunctions.

Basic Flags

Whereas Bishops slide in a1h8-direction and h1a8-direction, and Rooks slide
in a1h1-direction and a1a8-direction, the Queen is a combination of the sliding
as a Bishop and the sliding as a Rook.8 The non-sliding characteristics of the
Knight are unique. As only piece it can jump over other pieces. The properties
of the Pawn of every player are also unique and are marked by specific flags. For
identification of the colour and the board border (see Section 2.2) three further
flags are required.

All following basic flags and flag disjunctions are indicated in the hexadecimal

8In this thesis the absolute information about the direction (a1h1, a1a8, a1h8, h1a8) is
preferred to the relative information about the direction (horizontal, vertical, diagonal, an-
tidiagonal) as the former is independent of the perspective on the board.
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system. An empty square is characterised by flag none = 00. The pieces are
designated in ascending order as following: flag pawn = 01, flag knight = 02,
flag bishop = 04, flag rook = 08, and flag king = 10. The piece colour is
characterised by flag white = 20 and flag black = 40. Finally, the board
border is to be unambiguously indicated by flag border = 80.

Flag Disjunctions

With the help of a disjunction of basic flags we obtain unique flags for all white
and black pieces. In addition, the order of the material value according to
Kaufman [32] is considered. Regardless of the respective colour flag, the piece
type can be unmasked by conjunction. Subsequently, all flag disjunctions for
white pieces are defined as follows.

white pawn = flag white ∨ flag pawn = 20 ∨ 01 = 21

white knight = flag white ∨ flag knight = 20 ∨ 02 = 22

white bishop = flag white ∨ flag bishop = 20 ∨ 04 = 24

white rook = flag white ∨ flag rook = 20 ∨ 08 = 28

white queen = flag white ∨ flag bishop ∨ flag rook = 20 ∨ 04 ∨ 08 = 2C

white king = flag white ∨ flag king = 20 ∨ 10 = 30

Piece flags for black pieces consist of these basic flags, too. The arrangement of
pieces in ascending order has an advantage that pieces can be already compared
in their material value rather simply. Considering these criteria, the pieces and
the board border cannot be defined more compactly by flag disjunctions.

2.3.2 Sequential and Recursive Piece Lists

The use of piece lists in non-bitboard computer-chess architectures is the only
possibility to access all pieces in arranged order in a time-saving way. Without
the piece lists the complete board would have to be scanned for pieces.

”We certainly don’t want to have to loop over all of the 64 possible squares.”
(Robert Hyatt [25])

A separation of pieces and Pawns is just as obvious as the separation between
white and black piece lists. The Pawns should be processed in the evaluation
functions and move generators, separately from the pieces. The more detailed
the piece lists are organised, the more specifically the qualities of pieces and
Pawns can be examined.

With the detailed splitting of the piece lists into piece types, piece-specific in-
formation can be managed implicitly for every piece type and the Pawns, such
as piece count or piece colour. The possibly detailed splitting of the piece lists is
the most elegant solution in order to split the data and to organise the implicit
management of the data in a non-redundant way. We note that this results in
the fact that the computations, which retrieve and manipulate the data from
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the piece lists, are better separated from each other with regard to the contents
and clarity.

The constants and the piece lists are defined in the source-code listing of Figure
2.4. In the computer-chess architecture of Loop Leiden even more detailed
piece lists are used (see Subsection 2.3.3). A further interesting possibility of the
organised management of pieces and Pawns on the chessboard is to be realised
by a doubly-linked list. In addition, the mode of operation is recursive: after
the first piece has been retrieved from the list, the retrieved square becomes the
index of the next piece in the list. By this method, a recursive forward linkage
of pieces within the doubly-linked list is achieved. The reverse linkage occurs
explicitly and only serves for managing the doubly-linked list while removing
and adding pieces into the doubly-linked list.

Definitions of Piece Constants and Piece Lists

// d e f i n i t i o n of maximum po s s i b l e p i ece cons tant s
// in a l e g a l chess game cons ider ing
// promotions and underpromotions
const int MAXPAWNS=8;
const int MAX KNIGHTS=2+8;
const int MAX BISHOPS=2+8;
const int MAXROOKS=2+8;
const int MAX QUEENS=1+8;
// d e f i n i t i o n of d e t a i l e d p i ece l i s t s
int pawn l i s t [MAXPAWNS] ;
int k n i g h t l i s t [MAX KNIGHTS ] ;
int b i s h o p l i s t [MAX BISHOPS ] ;
int r o o k l i s t [MAXROOKS] ;
int q u e e n l i s t [MAX QUEENS] ;

Figure 2.4: Source-code listing for the definition of detailed piece lists.

2.3.3 Light and Dark Squares

A Bishop on a light square will be designated as light Bishop from now on.
Likewise, a Bishop on a dark square will be referred to as dark Bishop. The
separation of Bishops on light squares and dark squares within the piece lists can
be quite useful when developing algorithms for attack detection and evaluation
patterns.

The light Bishop can only be located on the 32 light squares (→ b1, d1, . . .,
e8, g8) of the board. Thus, the unnecessary examination of the light Bishop
will not occur, if, for example, an attack on a dark square is detected. Apart
from higher efficiency and the possibility to develop algorithms more precisely,
the information about the square colour of a Bishop is delivered implicitly and
does not have to be investigated explicitly. As a result, the bishop pair cannot
merely be defined by the existence of two Bishops, but by the existence of a light
Bishop and a dark Bishop as a complementary pair. IM Kaufman mentioned
this quality of the bishop pair in the context of the duplication of function
without redundancy [32].
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”With two bishops traveling on opposite colored squares there is no possi-
bility of any duplication of function.”

For example, insufficient protection on squares of one colour is evaluated by cer-
tain pawn formations and single Bishops in evaluation patterns of the interactive
piece evaluation. Here, a malus for the so-called Melanpenie or Leukopenie is
assigned depending on additional criteria [33].9

The source-code listing of Figure 2.4 is extended by the splitting of the piece
list for Bishops

int b i s h o p l i s t [MAX BISHOPS ] ;

into one piece list for light Bishops and one for dark Bishops. In some computer-
chess engines underpromotions were often not considered, such as in Aristarch

by Zipproth or in Rybka by Rajlich, in order to simplify move generators. In the
real chess game only the knight promotion is relevant as this is not redundant to
the queen promotion. The rook promotion and bishop promotion will be only
interesting in very few endgames, if a threatening stalemate can be prevented by
that. In this respect, the light Bishop and the dark Bishop should be managed
in several piece lists and not in single integer variables (in analogy to the King)
in order to be able to take into account these very rare underpromotions.

2.3.4 Forward | Reverse Piece-list Scan

The advantage of the fine division of information can be recognised in the se-
quential piece-list scan. If, for example, the piece counter for the opposing light
Bishops is zero and the friendly King occupies a light square, an attack by the
opposing Bishops will be impossible. Extracting of such trivial conditions leads
to even higher efficiency in the algorithms for the recognition of attacks.

The king square is stored in a further integer. Of course, piece counters are
also to be managed for every piece list. In total, we arrive at 6 piece lists with
6 piece counters for each White and Black, and also one integer for every king
square. Access to these contiguous piece lists is realised by a sequential loop.

Piece lists can be processed forwards with a for-loop and reversed with a while-
loop. In case of a for-loop, the first element of the list will be processed first.
In case of a while-loop it is beneficial to select the last element first. The
two possibilities of the piece-list scan are presented in the source-code listing
of Figure 2.5. Attention is to be paid to the pre-decrementation in case of the
reverse piece-list scan as decrementation is to be executed prior to access to the
sequential piece list.

2.3.5 Incremental Piece-list Update

Below we discuss the incremental piece-list update and compare this straight-
forward technique with the Rotated Bitboards.

9Hans Kmoch describes insufficient occupation of the dark squares by Pawns and the dark
Bishop as Black poverty (Melanpenie) and insufficient occupation of the light squares by
Pawns and the light Bishop as White poverty (Leukopenie).
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Forward Piece-list Scan

// example : scan white Rooks
for ( p i e c e s =0; p i e c e s < whi te rooks ; p i e c e s++) {

sour ce=w h i t e r o o k l i s t [ p i e c e s ] ;
// i n s e r t s p e c i a l code f o r p i ece handl ing here

}

Reverse Piece-list Scan

// example : scan white l i g h t Bishops
p i e c e s=wh i t e l i g h t b i s h op s ;
while ( p i e c e s > 0) {

sour ce=w h i t e l i g h t b i s h o p l i s t [−−p i e c e s ] ;
// i n s e r t s p e c i a l code f o r p i ece handl ing here

}

Figure 2.5: Source-code listing for forward | reverse piece-list scan.

Doing and Undoing Moves

The incremental update of a contiguous piece list in the function for doing moves
is only possible with the information of a further incremental index board. This
index board contains the index for the corresponding piece list for every square,
which is occupied by a piece. If, for example, a white Rook is on square h7, and
this Rook is entered in the white rook list on the second position, index = 1
will appear in the index board on square h7.10 Both the contiguous piece lists
and piece counters as well as the index board must be updated in the function
for doing moves as shown in the source-code listing of Figure 2.6.

In case of undoing a move, as shown in the source-code listing of Figure 2.6, the
same steps are performed as with doing a move by swapping the source square
(→ from) and the destination square (→ to).

Do a move in from → to direction

// example : whi te l i g h t Bishop i s moving
index=whi te index [ from ] ;
wh i te index [ to ]= index ;
w h i t e l i g h t b i s h o p l i s t [ index ]=to ;

Undo a move in to → from direction

// example : whi te l i g h t Bishop i s moving
index=whi te index [ to ] ;
wh i te index [ from]= index ;
w h i t e l i g h t b i s h o p l i s t [ index ]=from ;

Figure 2.6: Source-code listing for piece-list update while doing a move.

10In C/C++ entries in vectors always start with the index zero.
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Doing and Undoing Capture Moves

Doing a capture move must be performed explicitly in order to update incre-
mentally the piece list and the piece counter of the opponent as well as the
index board. In the source-code listing of Figure 2.7 the piece counter of Black
is decremented, and the last piece of the piece list is copied on the place of the
captured piece.

Undoing a capture move, as shown in the source-code listing of Figure 2.7, is
performed in the same way as in the example of doing a capture move. The
source square and the destination square are only swapped. The square of the
captured piece is attached to the end of the piece list. The current position
of the piece in the piece list is entered in the index board. Finally, the piece
counters are incremented.

Do a capture move in from → to direction

// example : b l a c k Knight i s captured
b l a ck p i e c e s −−;
b l ack kn ights −−;
index=black index [ to ] ;
square=b l a c k k n i g h t l i s t [ b l a ck kn i gh t s ] ;
b l a c k k n i g h t l i s t [ index ]= square ;
b l ack index [ square ]= index ;

Undo a capture move in to → from direction

// example : b l a c k Knight i s captured
b l a c k k n i g h t l i s t [ b l a ck kn i gh t s ]= to ;
b l ack index [ to ]= b l a ck kn i gh t s ;
b l a ck kn i gh t s++;
b l a c k p i e c e s++;

Figure 2.7: Source-code listing for piece-list update while doing a capture move.

Incremental Piece-list Update versus Rotated Bitboards

The competitiveness in speed of a computer-chess architecture depends strongly
on the redundancy of the data to be managed. Therefore, the computing time for
the incremental update of piece lists, piece counters, and the index board while
doing and undoing moves is compared with the incremental update of the non-
rotated bitboard (→ a1h1-orientation) and the three rotated bitboards (90◦ left
→ a1a8-orientation, 45◦ right → a1h8-orientation, 45◦ left → h1a8-orientation)
[27] within the scope of a Rotated Bitboard computer-chess architecture. These
results depend on the sophistication of the bitboard implementation. Therefore,
we implemented the additional rotated bitboards into the bitboard computer-
chess engine of Loop Amsterdam in order to ensure convincing results.

The benchmark test is carried out on a 64-bit computer environment. Four
chess positions are taken from the middlegame and the endgame respectively.
The required computing time is measured, in order to do and undo all legal
moves (capture moves and non-capture moves) 107 times of the corresponding
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position. The chess positions are randomly selected and do not favour any of
these two technologies.

In Table 2.2 the results of measurement of this benchmark test are summarised.
In the first column the numbers of the benchmark test positions are entered.
The second and third columns contain the number of legal capture moves (→
capt) and non-capture moves (→ non-capt) of the corresponding test position
respectively. In the fourth and fifth columns the CPU times are entered for doing
and undoing of 107 × (capt moves + non capt moves) of the New Architectures
and the Rotated Bitboards. In the sixth column the performance improvement is
entered in per cent of the New Architectures from Loop Leiden in comparison
with Rotated Bitboards.

Performance Comparison: 107 Iterations per Position

moves (n) time (seconds) rel (%)

New Rotated

position capt non-capt Architectures Bitboards improvement

middlegame

1 3 53 18.2 21.4 17

2 3 39 14.7 17.2 17

3 5 41 15.3 17.9 17

4 3 40 14.9 17.6 18

endgame

1 0 15 5.0 6.0 20

2 3 31 12.2 14.4 18

3 0 25 8.5 9.9 16

4 1 16 6.0 7.0 16

Table 2.2: Performance comparison of New Architectures and Rotated Bit-
boards.

Whereas the New Architectures with detailed piece lists from Loop Leiden can
do and undo approximately 29.6× 106 moves

second
in middlegame positions, the Ro-

tated Bitboard technology can do and undo approximately 25.2× 106 moves
second

in
middlegame positions. The result of this measurement in endgame positions is
almost identical. It may be concluded that the detailed piece list based technol-
ogy of Loop Leiden could perform the basic board operations approximately
17% faster such as doing-undoing moves and capture moves than the Rotated
Bitboards.

2.3.6 Random Piece Arrangement

The random piece arrangement in the piece lists is a difficult phenomenon while
scanning the pieces (see Subsection 2.3.4). The evaluation and the SEE rarely
produce different results because at least two sliding pieces (especially two
Rooks) from the same piece list should aim at the same destination square.
Below we will discuss this issue.
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Due to the doing and undoing of capture moves, the contents of the piece lists are
mixed time and again. By the capture of a piece, the last piece of the piece list
is added to replace the captured piece. Then, the piece counter is decremented
(see source-code listing of Figure 2.7). During the undoing of this capture move,
the captured piece is placed at the end of the piece list, and the piece counter is
incremented (see source-code listing of Figure 2.7). The contents of piece lists
are continuously mixed by this algorithm. So, the order of the stored contents
is changed, which can lead to differences in evaluation patterns and in static
exchange evaluations especially in the context of hidden attackers.

The order of pieces in the piece list at any time during the computation is thus
accidental and neither deterministic nor reproducible. The order while scanning
the bits in the bitboard computer-chess architecture is, in contrast, always the
same as active bits of a certain bitboard are sequentially scanned via bit scan
forward or bit scan reverse (see Section 3.5).

The example position of Figure 2.8 is taken from a random measurement, and
does not have any deeper chess background as the game is won by Black ac-
cording to 1. . . Ra1 2 Rd1 RXd1 3 QXd1 Ne3.11 Here, we only illustrate the
problematic nature of the random piece arrangement in piece lists. The cap-
ture move 1. . . QXd4 is to be examined more precisely in the context of a static
exchange evaluation. The destination square d4 is threatened by both white
Rooks on square d2 and square c4. The black Rook on square a4 is a hidden
attacker, and only prevented from moving to square d4 by the white Rook on
square c4. The order of captures of the two white Rooks plays a decisive role
for the further static exchange evaluation. Only with 2 RcXd4 the hidden black
attacker is activated, which changes the static exchange evaluation. The inter-
ested readers can compute themselves both static exchange evaluations after
reading Chapter 4 and in particular the example in Section 4.4.

Up to now this problem has been reported by researchers only in context of
Rooks. Theoretically, it can also occur with two light Bishops, two dark Bishops,
or two Queens. In general, this phenomenon occurs only in cases where two
sliding pieces from the same piece list aim at the same destination square, and
at least one of these two pieces prevents an opposing sliding piece from moving
to the same destination square. Romstad [50] observed a similar problem in the
context of a passed Pawn asymmetry. However, in this case, the order of the
bit scan caused the unintentional evaluation asymmetry.

2.4 Experiments with Pieces in Lists12

The number of pieces in the piece lists is measured during the computations.
The measured results are statistically evaluated. In order to obtain a better
understanding about the performance development in the different game stages
of the chess game we perform two experiments (one for the middlegame and one
for the endgame). The used test positions do not have any great influence on

11This position was analysed by Loop as follows (one variation reads): 4 Nd3 QXd4 5 RXd4
NXd1 6 bXc6 Nc3 7 RXg4 NXg4 8 Bf3 NXf2 9 KXf2.

12The results of the following experiment were presented at the Ph.D. Day at the Maastricht
University, 2005.
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Static Exchange Evaluation Problem for . . . QXd4

0Z0ZrZkZ
ZpZ0Zpo0
0ZpZ0m0Z
ZPMnl0Z0
rZRM0ZbZ
ZQZ0Z0O0
0Z0SPO0Z
Z0Z0Z0JB

Figure 2.8: SEE problem with white Rooks in different piece-list orders.

the results provided that the number of pieces is almost identical. The average
number of pieces in the piece list and their standard deviation are used for
interpretation of these results.

This section contains two subsections. In Subsection 2.4.1 the experiment with
pieces in lists will be described. In Subsection 2.4.2 the results will be discussed.

2.4.1 The Experiment

For the testing procedure, counters for the number of pieces in the piece lists
are implemented at suitable places in the source code of the computer-chess
architecture of Loop Leiden. In this way, it is possible to determine the
statistical distribution of the number of pieces. In Table 2.3 average middlegame
positions and endgame positions are taken as an experimental basis.13 In the
first column piece numbers for a piece list are entered in ascending order. In
the second column the measured piece counters of middlegame positions deliver
the information about how often a piece list contained n pieces. In the third
column the relative proportion of pieces in the piece lists was computed. In the
fourth and fifth columns the analogous experimental results are entered for a
selection of endgame positions.

2.4.2 Results

In middlegame positions mostly pieces ≤ 2 are entered in the piece list. 3 ≤
pieces ≤ 4 per piece list was measured rarely. The occurrence of pieces = 5 per
piece list is in turn a little more frequent, which is due to the separated piece lists

13All positions shortly after the opening are referred to as middlegame positions. All posi-
tions before the end of a game are designated as endgame positions.
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Pieces in Lists

middlegame results endgame results

pieces (n) abs rel (ppieces) abs rel (ppieces)

0 13,500 0.11 173,900 0.57

1 63,100 0.53 100,700 0.33

2 34,600 0.29 23,200 0.08

3 2,070 0.02 2,900 0.01

4 2,400 0.02 4,000 0.01

5 3,900 0.03 1,800 0.01

6 90 0.00 0 0.00

7 0 0.00 0 0.00

8 0 0.00 0 0.00

sum 119,660 1.00 306,500 1.00

Table 2.3: Pieces in lists in middlegame and endgame phases.

for Pawns. In contrast, in the endgame approximately 90% of pieces ≤ 1 are
entered in the piece lists. The occurrence of 0 ≤ pieces ≤ 2 in the middlegame
applies even to approximately 93% of all piece lists. This makes us presume
that the massive use of detailed piece lists especially with a decreasing number
of pieces works more efficiently. For computation of the average value of pieces
per piece list and the standard deviation the formulas from Equations 2.9 and
2.10 are used [9, pages 750f.].

Average Value and Standard Deviation for Pieces in Lists

µ =

8∑

pieces=0

pieces× ppieces (2.9)

σ =

√
√
√
√

8∑

pieces=0

(pieces− µ)2 × ppieces (2.10)

For computation of average values µmiddlegame and µendgame the number n of
pieces in column 1 from Table 2.3 is to be multiplied with the relative frequencies
from columns 3 and 5 as in Equation 2.9. The standard deviations σmiddlegame

and σendgame are computed according to Equation 2.10. The average value in
the middlegame is µmiddlegame = 1.45 and the corresponding standard deviation
is σmiddlegame = 1.00. The average number of pieces in lists in the endgame is
with µendgame = 0.60 clearly lower, which is due to the decreasing number
of pieces. Thus, the standard deviation in the endgame σendgame = 0.63 is
smaller. Accordingly, an acceleration of basic computations within a computer-
chess architecture directly depends on the decreasing number of pieces.
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2.5 Blocker Loops for Sliding Pieces

In Section 2.3 the management and organisation of information in piece lists
have been examined. In this section the sliding qualities of Bishop, Rook, and
Queen are analysed. The sliding of Bishop, Rook, or Queen is the most complex
movement on the chessboard as a blocking piece can occupy every square of a
sliding direction.

When generating non-capture moves, all accessible squares on the chessboard
are entered in a move list. Only interposing squares of a sliding direction must
be analyzed when recognizing a threat to a King.14 When generating moves,
the recognition of attacks and evaluation of mobility loops are used in order to
analyse the sliding of Bishops, Rooks, and Queens. Almost every non-bitboard
computer-chess architecture consists of hundreds of different for, while, and
do-while loop constructions. Nevertheless, this tool mostly used in the non-
bitboard computer-chess architecture has been hardly examined up to now. In
this section (1) the sliding-direction blocker loop and (2) the destination-source
blocker loop are introduced and examined. In spite of the variety of applications,
these two blocker loops are sufficient to cover all computations in the context
of sliding pieces within a state-of-the-art computer-chess engine such as Loop

Leiden.15

This section contains two subsections. In Subsection 2.5.1 the sliding-direction
blocker loop will be introduced. In Subsection 2.5.2 the destination-source
blocker loop will be introduced.

2.5.1 The Sliding-direction Blocker Loop

The use of loops enables a sliding piece to slide over the chessboard. In this case,
the piece slides from its source square in a direction until it collides with another
piece or the board border (see Section 2.2). This collision is processed explicitly.
Finally, this sliding process is repeated with the further sliding directions until
all sliding directions of this piece are examined. A h1a1 sliding-direction blocker
loop with subsequent evaluation of the blocker squares is presented in the source-
code listing of Figure 2.9.

2.5.2 The Destination-Source Blocker Loop

Quite often information is required, whether a piece can be attacked by another
piece. From this information it is then possible to gain more complex knowl-
edge about pinned pieces, x-ray attacks, etc. In this case only sliding pieces are
analysed. It must be examined whether a destination square can be attacked by
a sliding piece on a source square. In order to dispense with the additional con-
dition, whether the destination square is already reached, the sliding direction
is simply reversed. Thus, a sliding piece slides now from the destination square
over the chessboard to its source square. The additional condition, whether the

14Interposing squares exist only in sliding directions since every interposing square can
contain a blocking piece which blocks sliding from a source square to a destination square.

15The computer-chess architecture of Loop Leiden implements approximately 320 blocker
loops.
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Collision Detection while Sliding along a Direction

increment=INCREMENT h1a1
// s t a r t t he b l o c k e r loop in h1a1−d i r e c t i on
for ( next squar e=from+increment ;

p i e c e ( next squar e ) == NONE; next squar e+=increment ) ;

i f ( p i e c e ( next squar e ) & enemy ) {
// a capture i s p o s s i b l e : i n s e r t code here to determine t h i s case

}

Figure 2.9: Source-code listing for sliding and collision detection.

destination square is reached, is thus redundant within the blocker loop. At the
latest, when reaching the source square the corresponding destination-source
blocker loop is terminated as it comes to the collision with the piece itself.

A typical destination-source blocker loop from Loop Leiden is presented in
the source-code listing of Figure 2.10. After retrieving the increments from a
one-dimensional look-up table (see Subsection 2.2.4), a necessary condition is
checked. Only when the source square is attainable from the destination square
by a pseudo-legal move, the blocker loop will be launched.

Sliding from Destination Square to Source Square

// a piece i s s l i d i n g in des t inat ion −source d i r e c t i on
increment=queen increment (OFFSET+des t i na t i on squa r e−s ou r c e s qua r e ) ;
i f ( increment != 0) {

for ( next squar e=de s t i na t i on squa r e+increment ;
p i e c e ( next squar e ) == NONE; next squar e+=increment ) ;

i f ( next squar e == sour c e s qua r e ) {
// a s l i d i n g p iece on source square can a t t ac k

de s t i na t i on s quar e
}

}

Figure 2.10: Source-code listing for sliding in destination-source direction.

2.6 Experiments with Loop Iterations16

In the same way as in the previous experiment in Section 2.4, the loop iterations
within blocker loops are determined in the experiment below. The gained results
are also used for the prediction and interpretation of the computer-chess archi-
tecture performance in ratio to the game phase. Of course, the following results
of measurement are subject to small deviations. For this reason, comparisons
between game phases are to be evaluated qualitatively.

16The results of the following experiment were presented at the Ph.D. Day at the Maastricht
University, 2005.
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This section contains two subsections. In Subsection 2.6.1 the experiment with
loop iterations will be described. In Subsection 2.6.2 the results will be dis-
cussed.

2.6.1 The Experiment

For the testing procedure, counters for the number of loop iterations are imple-
mented at suitable places in the source code of the computer-chess architecture
of Loop Leiden. Thus some computations, that are based on blocker loops,
can also be optimised specifically.

Middlegame positions and endgame positions were taken as an experimental
basis for the results in Table 2.4. In the first column the number of possible
loop iterations is entered in ascending order. In the second column the measured
counters of middlegame positions provide the information on how often loops
with n iterations were executed. In the third column the relative share of loops
with n iterations piterations was computed. In the fourth and fifth columns the
analogous experimental results are entered for a selection of endgame positions.

Loop Iterations

middlegame results endgame results

iterations (n) abs rel (piterations) abs rel (piterations)

0 34,000 0.44 27,000 0.28

1 19,000 0.24 21,700 0.22

2 10,400 0.13 12,700 0.13

3 7,000 0.09 13,600 0.14

4 2,600 0.03 10,500 0.11

5 2,200 0.03 5,100 0.05

6 400 0.01 3,000 0.03

7 2,000 0.02 900 0.01

sum 77,200 1.00 93,800 1.00

Table 2.4: Loop iterations in middlegame and endgame phases.

2.6.2 Results

In middlegame positions the blocker loop is terminated in 90% of all com-
putations after iterations ≤ 3. Only in fewer than 4% of all computations
the corresponding blocker loop is terminated after 6 ≤ iterations ≤ 7. In
endgame positions the blocker loop is terminated in 88% of all computations af-
ter iterations ≤ 4. Due to the chessboard, which becomes increasingly empty,
more iterations must be computed in the later phase of a chess game. The
statistical evaluation of this experiment is carried out in the same way as the
previous experiment in Section 2.4 according to the formulas for the average
value in Equation 2.11 and the standard deviation in Equation 2.12 [9, pages
750f.].
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Average Value and Standard Deviation for Loop Iterations

µ =

7∑

iterations=0

iterations × piterations (2.11)

σ =

√
√
√
√

7∑

iterations=0

(iterations − µ)2 × piterations (2.12)

For the computation of average values µmiddlegame and µendgame the number
of iterations in column 1 from Table 2.4 is to be multiplied with the relative
frequencies from columns 3 and 5 as in Equation 2.11. Standard deviations
σmiddlegame and σendgame are computed according to Equation 2.12. The aver-
age value in the middlegame is µmiddlegame = 1.20, and the standard deviation
is σmiddlegame = 1.00. The average number of iterations in the endgame is 50%
higher by µendgame = 1.80, which depends on the chessboard, which becomes
increasingly empty. The standard deviation σendgame = 1.30 is also a little
higher in the endgame. The number of pieces decreases more strongly, and is
contrasted to the increasing number of iterations within the blocker loops. In
spite of that, a significant acceleration of the computation speed can be observed
within the non-bitboard computer-chess architecture.

2.7 Answer to Research Question 1

In this chapter we introduced the internal computer chessboard in Section 2.2,
the detailed piece lists in Section 2.3, and the blocker loops in Section 2.5. Only
if these three techniques are in a harmonious interplay, a high-performance
framework for the highest requirements on a computer-chess engine can be im-
plemented. All algorithms for move generation, attack detection, mobility eval-
uation, and static exchange evaluation (see Chapter 4) from Loop Leiden are
based on these three techniques.

The requirements for the development of a computer-chess architecture - (1)
competitiveness in speed, (2) simplicity, and (3) ease of implementation - were
defined at the beginning of this chapter. In the further course of this chapter
the new computer-chess architecture of Loop Leiden is critically scrutinized
and compared with Rotated Bitboards [27]. Below we examine these three
requirements with respect to the implementations of Loop Leiden.

Competitiveness in Speed

The management overhead of data is quite small, since the information is man-
aged in detailed piece lists and no explicit redundancy as with Rotated Bit-
boards is necessary. The incremental expenditure of doing and undoing moves
(see Subection 2.3.5) is minimal as in each case only the corresponding piece
list and the index board of White or Black must be updated (see Subsection
2.3.5). Doing and undoing capture moves is also highly efficient as only the
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opposing piece list must be updated, and the corresponding piece counter must
be decremented and incremented.17

Simplicity

As no absolute square information is required for addressing the look-up tables
within a computer-chess architecture, it can be dispensed with the use of bijec-
tive two-dimensional vectors. Due to the seven-square horizontal board border,
the implementation of more memory-efficient and more performance-efficient
surjective one-dimensional vectors succeeded. For accessing the look-up table
only the distance between source square and destination square is required.
Moreover, only basic arithmetic operations are used (→ plus, minus, increment,
and decrement) in the following cases: (1) while accessing and manipulating
piece lists and (2) while executing blocker loops. Code implementations, such
as code blocks (for- and while-loops, if- and switch-statements) and func-
tions, are never nested deeper than three times due to the skilful use of the
one-dimensional look-up tables, detailed piece lists, and blocker loops in the
computer-chess architecture of Loop Leiden.

Ease of Implementation

Due to the detailed piece lists, a specific code must be written for every single
piece (→ Pawn, Knight, light Bishop, etc.). Thus, the code can be optimised
and simplified quite well. Redundant if- and switch-statements within move
generators are completely excluded. The detailed piece counters can be used
in evaluation patterns (recognition of the bishop pair, etc.). Unlike bitboard
computer-chess architectures, the entire computer-chess architecture is compet-
itive in speed on almost all software and hardware environments. Moreover,
this architecture can simply be used in other chess variants [7] (Gothic Chess,
10 × 8 Capablanca Chess, Glinski’s Hexagonal Chess, etc.) and board games,
such as computer Shogi.

Empirical Results

A brute-force performance test follows these theoretical considerations. For this
test two recursive brute-force algorithms (see source-code listings in Appendix
A.1) are implemented in the computer-chess architecture of Loop Leiden and
in an exactly analogous computer-chess architecture, which is based on Rotated
Bitboards.

In the case of a brute-force recursion, all nodes of a tree are examined. Therefore,
the results of the measurements are well comparable. Both recursive algorithms
examine exactly the same number of nodes. The only difference is the order of
the measured nodes. In the first algorithm (→ basic_recursion) all moves are
done-undone sequentially. In the second algorithm (→ advanced_recursion)
the moves are sorted a priori according to heuristic procedures. Thus, even more

17Loop Leiden: In the middlegame ≥ 50% of all done-undone moves are capture moves
because of the quiescence search. In the endgame the amount of capture moves decreases to
≤ 20%.
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sophisticated move generators (→ move generators for check evasions, capture
moves, etc.) and SEEs (see Chapter 4) are considered in the second brute-force
algorithm. The second algorithm is close to a sophisticated implementation of an
αβ-search algorithm without search window. Furthermore, the measurements
are always reproducible and therefore well comparable.

A closed position from the chess game GridChess vs. Loop Amsterdam

(→ 8 Bd3 b6 9 Bb2, see Appendix C.2) and an open position from the chess
game Loop Amsterdam vs. Shredder (→ 45 gXf4 Qd8 46 bXc5 Rd7, see
Appendix C.2) were used for this experiment. The measurements are carried
out with both computer-chess architectures in the 32-bit mode and in the 64-bit
mode. In each case the CPU times in milliseconds (ms) are measured for the
basic recursion and the advanced recursion. In total, 16 results of measurement
are summarised in Table 2.5.

Brute-Force Performance Tests

New Architectures Rotated Bitboards

basic advanced basic advanced

closed position

32-bit (ms) 97,930 144,070 136,250 191,170

64-bit (ms) 78,000 135,340 81,090 139,290

improvement (%) 25 6 68 37

open position

32-bit (ms) 39,290 72,200 73,510 101,400

64-bit (ms) 31,180 67,100 42,040 70,480

improvement (%) 26 7 74 43

Table 2.5: Brute-force performance tests with New Architectures and Rotated
Bitboards.

As expected, the computer-chess architecture based on Rotated Bitboards prof-
its enormously from 64-bit computer environments in this experiment, with a
speed improvement of 37 to 74%. In spite of the almost ideal conditions on
the 64-bit computer system, the performance of the Rotated Bitboards is 3 to
5% worse than the performance of the computer-chess architectures of Loop

Leiden, called New Architectures. In the 32-bit mode Loop Leiden is 32 to
87% faster than the Rotated Bitboards. The high performance difference in
open positions is particularly remarkable. For this reason, the move generators
of Loop Leiden work especially efficiently in open positions, which depends
on the use of the blocker loop from Section 2.5.

Conclusions Research Question 1

For research question one, we may conclude that it is possible to develop non-
bitboard computer-chess architectures which are competetive in speed, simplic-
ity, and ease of implementation. The extent to what this is possible is quite
large, if we consider the performance of Loop Leiden in comparison with the
best computer-chess engines (see tournament results in Appendix C.1). From



2.7. ANSWER TO RESEARCH QUESTION 1 37

the empirical results given above we also may conclude that the implementation
of sophisticated move generators, attack detectors, and static exchange evalua-
tors for a state-of-the-art move ordering is more efficient than a computer-chess
architecture based on Rotated Bitboards. Therefore, in the next chapter we will
focus on the development of new techniques in relation to bitboards, but not in
relation to Rotated Bitboards.

Future Research

Since the Rotated Bitboards are less efficient than the New Architectures from
Loop Leiden in the 64-bit mode on a 8 × 8 board, the implementation of
this technology in computer Shogi with its 9× 9 board is especially interesting.
Computer Shogi seems to offer even greater progress in the field of board archi-
tectures as the researchers have mainly experimented with the use of Bitboards
so far [23].
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Chapter 3

Magic Hash Functions for

Bitboards

The main objective of Chapter 3 is to answer the second research question on
the basis of the scientific research and development of the computer-chess engine
Loop Amsterdam 2007. Below we repeat the second research question.

Research question 2: To what extent is it possible to use hash
functions and magic multiplications in order to examine bitboards in
computer chess?

In this chapter the basics of the magic hash approach and magic hash functions
will be examined. The use of the magic hash approach based on magic multi-
plications [30] has been discussed in different internet developer forums [36, 44]
since its publication by Kannan. Many extensive publications, measurements,
and hardware-independent developments followed, which are all based on the
technology of the magic hash functions.

The approach of the magic hash functions is to be preferred to the alternative
perfect hash functions by Fenner et al. [21], since their hash approach is less
universal. In addition, according to Fenner et al. their perfect hash functions
are not more efficient than Rotated Bitboards, but more space-efficient than
magic hash tables. A magic hash algorithm for the management of bitboards
as the compressed data media will consist of the following three elements [30].

1. A magic hash function and a magic multiplier. Both are used for (a)
a magic bit scan or a magic hash algorithm that manage only information
for a unique square or for (b) a magic hash function and a magic multiplier
set for a magic hash algorithm that manage, for example sliding directions
for several squares (see Section 3.6).

2. A function for the initialisation of the hash table. The function is
based on the magic hash function and the magic multiplier or the magic
multiplier set. This function calculates all conceivable bit combinations

39
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(bitboards → input keys) and their solutions. Hash addresses are com-
puted by the input keys via the magic hash function. Solutions are entered
in the corresponding hash addresses.

3. A function to access the initialised hash table. The magic hash
function generates the address for a magic bit scan in order to access the
hash table. In contrast, for (combined) sliding directions for a magic hash
algorithm the function must generate additional offsets in order to access
the initialised hash table, since a contiguous memory space (a sub-hash
table) is assigned to every square in the hash table.

For the implementation of an entire computer-chess architecture based on the
magic hash, several independent magic hash algorithms, sub-hash tables, and
hash tables to access the bit positions and 64-bit bitboards are to be developed.

The use of 64-bit unsigned integers (bitboards) within the scope of a computer-
chess architecture is quite memory-efficient for the management of board related
information. However, the use of bitboards has been redundant and inefficient
up to now (see empirical results in Section 2.7) as board related information
for the computation of sliding movements is to be managed in parallel many
times (→ Rotated Bitboards). In order to examine bitboards efficiently and
with minimum redundancy, fast and simple (perfect) hash functions must be
developed.

This chapter is organised as follows. In Section 3.1 representation and orien-
tation of bitboards are defined. In Section 3.2 the most important theoretical
basics and relations between the magic hash function and the magic multipli-
cation with powers of two and n-bit integers are introduced. In Section 3.3 the
index mappings are derived for a general n-bit bit scan and compound sub-hash
tables for (combined) sliding directions in order to address the hash tables with
the unique magic index. In Section 3.4 a manual trial-and-error procedure for
the generation of magic multipliers according to Kannan [30] is presented.

In Section 3.5 the magic hash for a bit scan forward (BSF) is developed. Its
mode of operation can also be used for a bit scan reverse (BSR) that already
implements all elements of an independent magic hash algorithm. The bit scan
within a bitboard computer-chess engine is necessary to access bit positions in
bitboards while e.g. generating or evaluating pieces, etc.

In Section 3.6 a magic hash for sliding directions on the basis of the theoretical
foundations from Section 3.2 is developed. The implementation is, apart from
a more complicated initialisation and the use of an offset-vector, quite simi-
lar to the implementation of a bit scan. Up to now, the generation of magic
multipliers for magic hash algorithms has had to be managed only with ap-
propriate trial-and-error approaches. In Section 3.7 a trial-and-error approach
based on the research undertaken by Romstad [48] is developed in order to gen-
erate optimal magic multipliers (optimal according to Kannan [30, page 7]) for
sliding directions. In Section 3.8 experiments are carried out with regard to
the structure and the qualities of magic multipliers with (1) the trial-and-error
algorithm and (2) the deterministic brute-force algorithm. The findings about
magic hash functions for bitboard representation gained so far are summarized
and discussed in Section 3.9 in order to answer the second research question.
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3.1 Representation and Orientation of Bitboards

In the further course of this chapter all examples and derivations are represented
in the binary system, since the logical structure, similar as in the hexadecimal
system, can be visually better displayed than in other systems. Only with the
operations left shift and right shift the bitboards with integers are shifted in the
decimal system in order to be able to visualise the change of the positions of
single active bits in the bitboards.

This section contains three subsections. The representation and orientation of
8-bit unsigned integers is dealt with in Subsection 3.1.1. The 16-bit unsigned in-
tegers (see Subsection 3.1.2) and 64-bit unsigned integers (see Subsection 3.1.3)
can be displayed line by line as a matrix arranged in the binary system with the
dimensions 4 × 4 or 8 × 8. A square shape of a bitboard is oriented as shown
in Figure 3.1. The first element of this 64-bit bitboard corresponds with bit 56
and represents square a8. The last element of the 64-bit bitboard is equivalent
to bit 7 and represents square h1.

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

Figure 3.1: The computer chessboard with a8h1-orientation.

3.1.1 8-bit Bitboards

The number one (a = 1) in the binary system stands for a single active bit and
is thus a power of two. The multiplication (a× b) of an integer (a) with a power
of two (b = 2n) is identical with the left shift operation (a << n). The following
example in Figure 3.2 demonstrates how the multiplication of an 8-bit bitboard
(8-bit unsigned integer, 0 ≤ a ≤ 28−1 = 255) with a power of two (b = 1000bin)
is calculated. In this thesis a bitboard is always represented as an item with
brackets around and with blanks between the bit positions. The orientation of
such a 8-bit bitboard corresponds with the orientation of a rank of a chessboard
from the white player’s view. The representation of the 8-bit bitboard conforms
to rank 1 of a chessboard from the white player’s view. The representation of
the bit positions of the 8-bit bitboard is thus, in contrast to the representation
of an integer in the binary system, to be read from left to right.
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1 × 8 Representation and Orientation of 8-bit Bitboards

∣
∣ bit0 bit1 . . . bit6 bit7

∣
∣

Multiplication and Left Shift of 8-bit Bitboards

∣
∣ 0 1 1 1 0 0 0 0

∣
∣ × 1000bin =

∣
∣ 0 0 0 0 1 1 1 0

∣
∣

Figure 3.2: Representation, orientation, and multiplication of an 8-bit unsigned
integer.

3.1.2 16-bit Bitboards

It is the easiest way to represent a 16-bit bitboard (16-bit unsigned integer,
0 ≤ a ≤ 216 − 1 = 65535) as a square 4 × 4 bit matrix. In this case, the 4 × 4
bit matrix is to be oriented as a 4 × 4 chessboard from the white player’s view.
A multiplication with a power of two (b = 1000bin) is carried out here as well.
The result can be interpreted as a shift of the files of active bits to 3 binary
positions (see Figure 3.3).

4 × 4 Representation and Orientation of 16-bit Bitboards

∣
∣
∣
∣
∣
∣
∣
∣

bit12 bit13 bit14 bit15
bit8 bit9 bit10 bit11
bit4 bit5 bit6 bit7
bit0 bit1 bit2 bit3

∣
∣
∣
∣
∣
∣
∣
∣

Multiplication and Left Shift of 16-bit Bitboards

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

× 1000bin =

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

<< 3dec =

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

Figure 3.3: Representation, orientation, and multiplication of a 16-bit unsigned
integer.

3.1.3 64-bit Bitboards

The same as in the example in Figure 3.3, the a-file of a 64-bit bitboard
displayed in the chessboard (64-bit unsigned integer, 0 ≤ a ≤ 264 − 1 =
18446744073709551615) can be transferred into the h-file by the multiplication
with (b = 10000000bin) (see Figure 3.4).
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8 × 8 Representation and Orientation of 64-bit Bitboards

∣
∣
∣
∣
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∣
∣
∣
∣
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∣
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bit56 bit57 · · · bit62 bit63
bit48 bit49 · · · bit54 bit55

...
...

bit8 bit9 · · · bit14 bit15
bit0 bit1 · · · bit6 bit7
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Multiplication and Left Shift of 64-bit Bitboards
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× 10000000bin =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 · · · 0 1

0 0 · · · 0 1
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0 0 · · · 0 1

0 0 · · · 0 1
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∣
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Figure 3.4: Representation, orientation, and multiplication of a 64-bit unsigned
integer.

3.2 Hash Functions based on Magic Multiplica-

tions

An example of an n-bit magic hash function in Equation 3.1 demonstrates the
general hash algorithm for the computation of a unique index. This unique
index is needed to access the hash table in order to retrieve the searched in-
formation (→ the result). For the computation of the unique index the two
parameters input and bits are to be passed on to the magic hash function. The
hash function processes these two variable parameters with the constant magic
multiplier (magic multiplier) and the constant number of bits (n). The amount
of bits (n) is dependent on the data type of the first parameter (input). The
second parameter (bits) describes the size of the hash table. bits = log2n is used
for the indexing of a single bit (→ bit scan). The constant magic multiplier is
from the same data type as the input key. For the processing of 64-bit input
keys (input), as for example bitboards, a 64-bit magic multiplier is also to be
used.

An Abstract n-bit Magic Hash Function

magic index(input, bits) =
input× magic multiplier

2n−bits
(3.1)

⇒ result(magic index) = hash table(magic index)

Apart from the magic hash function and an n-bit magic multiplier, a further
function for the initialisation of the hash table is required. The magic hash
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function is called in this function in order to be able to process the magic index
before the content of the hash table is addressed. This is quite an interesting
case with the bit scan, since the same magic hash function and the same hash
table are used for the bit scan forward and the bit scan reverse (see Section
3.5). The only difference in these two bit scans lies in the separation of a single
active bit from a bitboard.

An additional offset is to be calculated for a magic hash algorithm for sliding
directions, before the hash table can be addressed correctly (see Section 3.6).
Here, access to the hash table is also separated from the computation of the
magic index.

In the source-code listing of Figure 3.5 the declaration of the n-bit hash al-
gorithm based on magic multiplications is displayed. The access to the magic
hash, which Kannan mentions in his paper [30], is achieved by the function:

uint n magic hash use (uint n input , int b i t s ) ;

The data type chosen here

uint n

is to be defined explicitly as an unsigned integer with n bits.

Declaration of an n-bit Magic Hash Algorithm

uint n mag i c mu l t i p l i e r ;
uint n magi c hash funct i on ( uint n input , int b i t s ) ;
uint n mag i c h a s h i n i t i a l i s e (void ) ;
uint n magic hash use (uint n input , int b i t s ) ;

Figure 3.5: Source-code listing for the declaration of an n-bit magic hash algo-
rithm with its functions and the constant multiplier.

In the further course of this chapter we predominantly work with the unsigned
integer data type n = 8 and n = 64. The reference to the chessboard can only
be maintained with n = 64. Nevertheless, examples with n = 8 are easier to
comprehend and to visualise as its representation is more compact.

This section contains three subsections. In Subsections 3.2.1 to 3.2.3 we will
introduce the reader into the issues of the multiplication of bitboards with (1)
a power of two and (2) an arbitrary n-bit unsigned integer.

3.2.1 The Magic Multiplication

In order to understand the magic multiplication more precisely, the splitting
of a magic multiplier into its powers of two is helpful. Thus, it is possible to
display the multiplication as a sum of powers of two. A multiplication with a
power of two can also be written as a left shift according to Equation 3.2.

46 is an 8-bit magic multiplier, that is manually generated among further three
8-bit multipliers in Section 3.4. Through the splitting of the multiplier into
powers of two and the use of the left shift operator the integer 46 can be written
in the binary system.
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The Left Shift
a × 2n = a << n (3.2)

Splitting a Magic Multiplier in its Powers of Two

magic = 46

= 21 + 22 + 23 + 25

= (1 << 1) + (1 << 2) + (1 << 3) + (1 << 5)

= 00000010bin + 00000100bin + 00001000bin + 00100000bin

= 00101110bin.

After the magic multiplier is split up into its powers of two, two different appli-
cations of the magic multiplication will be introduced.

1. Power of two. A magic multiplier is multiplied with a power of two
b = 2i, 0 ≤ i ≤ n − 1. This operation is simply to be written by the
left shift operator. The bits of the resulting bitboard are shifted to the
left and the overflow is cut off. The so-called ”index a 1 in a Computer
Word” according to Leiserson et al. [37] is a more simple version of a hash
algorithm, as there are only n-permutations after the isolation of a single
bit in an n-bit word.

2. Arbitrary n-bit integer. A magic multiplier is multiplied by an arbi-
trary n-bit unsigned integer 0 ≤ b ≤ 2n − 1. This multiplication is more
complicated to comprehend and to compute, since the magic multiplier is
multiplied by a sum of powers of two, which cannot be explained with a
basic shift operation. The indexing of arbitrary n-bit integers, i.e., mul-
tiple 1-bit computer words, with the deBruijn approach has not been
possible in the context of a computer-chess architecture up to now [37].
However, the bits are arranged in compound bit-patterns (diagonal, hor-
izontal or vertical lines), so the number of the permutations decreases so
far, so that the indexing is possible by means of magic multiplication.

In the further course both types of the magic multiplication will be examined
in detail. Their specific applications in the environment of a computer-chess
architecture will be introduced as well.

3.2.2 The Magic Multiplication by a Power of Two

The product of the magic multiplier and the power of two input key are used
for the computation of an index for a bit scan in the context of a magic hash
algorithm (see Section 3.5). Whether the input key of this hash function is
the least significant bit (LSB) or the most significant bit (MSB), it does not
affect the hash function, since both the LSB and MSB are powers of two. The
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left shift and right shift of a magic multiplier with n ∈ {0, 1, 2, . . . , 61, 62, 63}
in Equations 3.3 and 3.4 show the magic multiplication by a power of two by
means of the left shift and right shift operation. The shift operations are already
the most elementary forms of the multiplication of an unsigned integer (magic)
with a power of two (a) or the reciprocal of a power of two (b).

Left Shift and Right Shift of a Magic Multiplier with n

n ∈ {0, 1, 2, . . . , 61, 62, 63}

a = 2n = 1 << n ⇒ magic× a = magic << n (3.3)

b =
1

a
=

1

2n
=

1

1 << n
= 1 >> n ⇒ magic× b = magic >> n (3.4)

The product of the magic multiplier with all 64 possible powers of two is shown
in the Equations 3.5. From exactly these products the indices to access a hash
table for a magic bit scan will be computed in Section 3.5. Only bit positions,
which are not shifted over bit position 63, are relevant for the further computing
of the product. The lower bit positions are filled with zeros, the same as with the
multiplication by integers. The filled zeros are to be considered when computing
indices and are important for the precise addressing of the hash table. The
associative, commutative, and distributive laws of mathematics apply to this
multiplication by overflow within a ring [3].

Multiplication with all Possible Input Keys (Powers of Two)

magic × 20 = bit63 bit62 bit61 . . . bit2 bit1 bit0
magic × 21 = bit62 bit61 bit60 . . . bit1 bit0 0

...

magic × 262 = bit1 bit0 0 . . . 0 0 0

magic × 263 = bit0 0 0 . . . 0 0 0

(3.5)

3.2.3 The Magic Multiplication by an n-bit Integer

The product of the magic multiplier and the n-bit unsigned integer input key
are also used, for example, to compute an index for a magic hash algorithm for
sliding pieces (see Section 3.6). A further application field of the indexing of at
most two 1’s is the indexing of the positions of knight pairs [37, page 6], bishop
pairs or rook pairs. However, the reduction of the hash table to a minimum size
of 212 entries fails. It is necessary instead, to allocate memory of 215 entries in
order to index arbitrary 64-bit masks with at least two active bits [37].

Before it will be possible to carry out the multiplication of the n-bit input key
with an appropriate magic multiplier, the input key is to be scrutinized, as this
consists of powers of two and as a result, the multiplication becomes considerably
complicated. Unlike the scientific research undertaken by Leiserson et al., only
masks for sliding directions and no arbitrary ”sparse multiple 1-bit computer
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words” [37] will be discussed in this chapter. In this respect, the task can
be performed easier, since the masks for sliding directions possess definitely
fewer bit combinations than, for instance, a 64-bit unsigned integer input key
with at least three randomly distributed active bits (→ 64!

(64−3)! = 249, 984 bit

combinations).

The n-bit integer key is nothing else but an n-bit mask, or an ”occupancy bit-
board which has active bits on squares where pieces are placed and has inactive
bits everywhere else” [30, page 6]. The precise relation between such a mask
for filtering (combined) sliding directions and a magic hash algorithm will be
examined in Section 3.6. At this stage, only the summation of a single shifted
bitboard is to be analysed.

An input key of the hash function for sliding directions can be, for example
a mask, that only possesses active bit positions along the (combined) sliding
directions. The following 64-bit unsigned integer input key (input) is a possible
input key of a Rook on square d4.

Example for a Possible 64-bit Input Key

input =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 1 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 219 + 225 + 228 + 230 + 235 + 251

The n-bit integer input key (input) can be written generally as a sum of powers
of two (see Equation 3.6). Here, the exponent pi are 6-bit unsigned integers
[30].

Generalized n-bit Integer Input Key

input =

n∑

i=0

2pi , 0 ≤ pi < pi+1 < 64 (3.6)

The multiplication of the n-bit magic multiplier by the random n-bit input key
can be split into the sum in Equation 3.7 due to commutativity and Equation
3.6 [30].

Since the representation of a detailed example of a 64-bit magic multiplication,
based on a 64-bit input key and a 64-bit magic multiplier, is difficult to display
due to the size of the bit matrix, we will focus on the 16-bit representation and
orientation according to Subsection 3.1.2 in the example of Figure 3.6.

The magic product of magic × input cannot, unlike the Equations 3.5, be dis-
played in a simple way since a summation of component products must be
carried out. Since, in this case, we compute with operations modulo 2n, the
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Definition of the Magic Product as a Summation of Leftshifts

magic product = input × magic

= magic × input

=

n∑

i=0

(magic << pi) (3.7)

Example for a 16-bit Magic Product

magic =
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, input =
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magic × input = magic × (21 + 26)

= magic << 1 + magic << 6

=

∣
∣
∣
∣
∣
∣
∣
∣

bit11 bit12 bit13 bit14

bit7 bit7 bit9 bit10

bit3 bit4 bit5 bit6

0 bit0 bit1 bit2

∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣

bit6 bit7 bit8 bit9

bit2 bit3 bit4 bit5

0 0 bit0 bit1

0 0 0 0

∣
∣
∣
∣
∣
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Figure 3.6: Example for a 16-bit magic product.

summation of the shifted magic multiplier leads to carry effects and overflows.
During the overflow at the multiplication by pure powers of two in Subsection
3.2.2, the overflow could be simply cut off, since carry effects complicate the
computation of sums modulo 2n.1

3.3 The Unique Magic Index

The computation of the magic index for the indexing of the corresponding hash
table occurs via an appropriate hash function based on magic multiplications
according to Section 3.2.2 Both the hash table for a bit scan and the hash table
for (combined) sliding directions are addressed via the magic hash function. The
essential difference lies in the size of the hash table and the stored information.

A hash table for the management of bit positions for a bit scan is, of course,
more memory-saving than a hash table for the management of bitboards, such
as it is needed for a hash for sliding directions. On the one hand, there are
considerably more combinations of bitboards for (combined) sliding directions.
On the other hand, the specific memory requirement of a 64-bit bitboard (→
8-byte) is greater than that for the retention of bit positions (→ 1-byte).

1We use modulo 2n in the context of addition and multiplication of n-bit integers because
computers have a fixed number of bits (e.g. 64-bit computer environments).

2A hash table in the context of computer-chess architectures can be a hash algorithm for
a bit scan, sliding-direction hash for Bishops, Rooks or single lines like verticals, horizontals
or diagonals.
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This section contains two subsections. In Subsection 3.3.1 we will develop the
index mapping for a bit scan. In Subsection 3.3.2 we will develop the index
mapping for (combined) sliding directions.

3.3.1 Index Mapping for a Bit Scan

In the following, the computation of the magic index for a bit scan is presented.
The implementation of an entire hash algorithm for a bit scan (forward | re-
verse) will be introduced later in Section 3.5. In this thesis the magic index
is therefore called unique magic index or also index mapping [30]. The index
mapping formulation refers, according to Kannan, to the magic product that is,
strictly speaking, not an index mapping yet, since the complete mapping will
be terminated by the division of the magic product with a power of two (see
Equation 3.8).

In Equation 3.8 the computation of a unique magic index for a bit scan is
presented. Without loss of generality, the implementation of the hash algorithm
in Section 3.5 refers to n = 64-bit integer words. The general mapping function
[30, pages 3-6], introduced here, has been already developed by Leiserson et al.
[37] for n-bit and 8-bit unsigned integer words based on deBruijn sequences.
This straightforward and fast mapping function for n-bit unsigned integer words
computes a unique magic index of the size log2n. As already shown in Equation
3.5, the unique magic index of an n-bit bit scan is a compound binary substring
with a size of log2n entries. In order to guarantee uniqueness, only the upper
log2n bits must be different after the multiplication of input×magic multiplier.
The hash index is equal to the unique magic index because the hash table is
completely addressed by the very same magic multiplier and thus no additional
offset has to be calculated.

The Magic Hash Index for a Bit Scan

magic index(input) :=
input× magic multiplier

2n−log2n
(3.8)

3.3.2 Index Mapping for Sliding Directions

The index mapping for (combined) sliding directions works as in Equation 3.8,
provided that sliding directions are to be calculated for a single square. A
complete magic hash algorithm for (combined) sliding directions consists of
single sub-hash tables which contain bitboards of all 64 squares. Thus, an offset
must be calculated before the computation of the unique magic index in order
to address the correct sub-hash table.

For the computation of the move bitboard for a single square and a (combined)
sliding direction all occupancy bits [30, page 6] must be extracted. A Rook on
square a1 can move onto maximum 14 squares. Pieces, that block the Rook
in the case of sliding, can only occupy 12 out of 14 squares. Consequently,
the border squares are not blocker squares for a sliding direction and therefore
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do not have to be considered while computing the unique magic index. An
enormous reduction of the hash table results from this because only 1

22 = 1
4 of

the memory capacity is required. In addition, the number of possible input keys
decreases, which significantly simplifies the trial-and-error generation of magic
multipliers (see Section 3.7). In total, there are 12 possible occupancy bits for a
Rook on square a1 and 212 = 4096 possible bit combinations for the input key.

In Figure 3.7 numbers of bits for the squares of a chessboard for the combined
sliding direction of a Rook and a Bishop are summarised. They indicate a
number of the occupancy bits for every single square. For example, exactly 11
bits are required for the sub-hash of a Rook square ∈ B in order to manage
all different bit combinations. The number of the occupancy bits is different,
which is also to be considered while computing the offset index.

Number of Bits for the Unique Magic Indices for Sliding Rooks

C B B B B B B C

B A A A A A A B

B A A A A A A B

B A A A A A A B

B A A A A A A B

B A A A A A A B

B A A A A A A B

C B B B B B B C







rook bits(square) =







10 : square ∈ A

11 : square ∈ B

12 : square ∈ C

Number of Bits for the Unique Magic Indices for Sliding Bishops

B A A A A A A B

A A A A A A A A

A A C C C C A A

A A C D D C A A

A A C D D C A A

A A C C C C A A

A A A A A A A A

B A A A A A A B







bishop bits(square) =







5 : square ∈ A

6 : square ∈ B

7 : square ∈ C

9 : square ∈ D

Figure 3.7: Number of bits for the unique magic indices for sliding Bishops and
sliding Rooks on a chessboard.

The computation of the offset in Equation 3.10 is implemented via a linear vec-
tor. Therefore, offsets for the rook hash can be easily calculated as in Equations
3.9. All sub-hash tables are addressed with this offset. The unique magic index
is calculated in the same way as already introduced in Equation 3.8. Merely the
mapping of a single sub-hash depends on respective bits of a square. The hash
index in Equation 3.12 is addressed in analogy with a two-dimensional vector
[29, page 77] by addition of the offset and the magic index.

A less memory-efficient but a little more intuitive alternative for the managing
of the hash table is realised by a homogeneous array access [30, page 6] (see
Subsection 3.6.2). This memory management is not lockless [28, 43], and im-
plements a one-dimensional vector with a constant offset or a two-dimensional
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The Offset-Index Vector for a Rook Hash

offset index(a1) = 0

offset index(a2) = 212 = 4096

offset index(a3) = 212 + 211 = 6144

... (3.9)

offset index(g8) = 212 + 211 + . . . + 211 = 96256

offset index(h8) = 212 + 211 + . . . + 211 + 211 = 98304

vector. The minimal array-access for the offset calculation was introduced by
Romstad, 2007 for the first time [48] (see Subsection 3.6.1). This approach
proved itself to be as quick on a current 64-bit computer system as the homo-
geneous array access with constant offset.3 However, hash entries would have
to be allocated for every sub-hash 212 = 4096 (→ rook hash) or 29 = 512 (→
bishop hash). 262144 hash entries (→ 2048 kb) are needed for the rook hash
with the constant offset and 102400 (→ 800 kb) hash entries with the minimum
offset. For the bishop hash the relation between the minimal array access 5248
(→ 41 kb) and the homogeneous array access 32768 (→ 256 kb) is even more
favourable, amounting to approximately 80% of memory capacity.

The Magic Hash Index for (combined) Sliding Directions

offset index(square) =

square−1
∑

i=a1

2bits(i) (3.10)

magic index(input, square) =
input × magic(square)

264−bits(square)
(3.11)

hash index(input, square) = offset index(square) +

magic index(input, square) (3.12)

3.4 Construction of 8-bit Magic Multipliers

The magic multiplier in Equation 3.7 has been already defined in Section 3.2.
A whole set of the magic multiplier is required for a more elaborate magic
hash procedure, such as the magic hash for (combined) sliding directions (see
Section 3.6). Preparatory for a magic hash for a bit scan, which implements only
one magic multiplier, an 8-bit magic multiplier is constructed manually. This
construction is quite similar to the construction of an 8-bit magic multiplier
according to Kannan [30, page 3]. With the magic hash for a bit scan the mode
of operation of the magic multiplication can be displayed clearly since the input
key is only a power of two.

3A hash table with the constant offset would correspond exactly to a two-dimensional
vector depending on a square.
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Through the multiplication of the input key [30], which is an 8-bit power of two,
with the magic multiplier input key×magic the magic multiplier is leftshifted.
The subsequent division of the magic product by a power of two corresponds to
a right shift. The computation of the unique magic index is the only purpose
of this operation. Consequently, only 8 = 23 → 3-bit sequences will be mapped
into the bit position 1-3 as a unique magic index from the magic multiplier.

An 8-bit magic multiplier is developed manually in Table 3.8. Column 1 contains
the input key. The input key is an 8-bit power of two, that is a bitboard with
only one active bit. Column 2 contains the unique magic index. These column
entries result from the 3-bit sequences which emerge by the construction of the
magic multiplier. The magic multiplier in main columns 3 and 4 is again split
up into its bits 1-8 and overflows 1-2. The 8-bit magic multiplier results from
the compound 3-bit sequences, which are in each case a unique magic index.

8-bit Magic Multiplier

bit position overflow

input key unique magic index 8 7 6 5 4 3 2 1 1 2

20 = 1 0 0 0 0

21 = 2 1 0 0 1

22 = 4 2 0 1 0

23 = 8 5 1 0 1

24 = 16 3 0 1 1

25 = 32 7 1 1 1

26 = 64 6 1 1 0

27 = 128 4 1 0 0

magic multiplier 0 0 0 1 0 1 1 1

Figure 3.8: Manual construction of an 8-bit magic multiplier.

Via manual construction, there can be developed four (→ 23, 2×23 = 46, 29, 2×
29 = 58) 8-bit magic multipliers. N -bit magic multipliers for a bit scan consist
of n

2 active bits since all unique magic indices must be different and therefore
the number of active bits is equal to the number of inactive bits. Moreover,
magic multipliers for the indexing of a bit scan, that are deBruijn sequences,
start with (log2n)−1 zeros [37, page 3, according to Steele (Sun Microsystems)].

These 4 magic multipliers can be verified with a basic brute-force algorithm,
which goes through all numbers between 1 and 28 − 1. With the same brute-
force verification all 25 = 32 magic multipliers for an unsigned integer 16-bit bit
scan and all 212 = 4096 magic multipliers for an unsigned integer 32-bit bit scan
can be detected by trial-and-error within a few minutes. The same brute-force
approach would, of course, not deliver any results for the magic multipliers of a
64-bit bit scan, because the smallest 64-bit magic multiplier must have exactly
32 active bits in a non-contiguous pattern.
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3.5 The Magic Hash Function for a Bit Scan

A particularly interesting implementation of a magic hash function is a bit scan
[56]. A bit scan is supposed to return the position of the least significant bit (→
LSB) or most significant bit (→ MSB) in a bit matrix.4 The isolation of the
LSB in a bit matrix is to be solved in a more elegant and technically better way
than the isolation of the MSB in a bit matrix. In order to generate unique magic
indices with a suitable magic hash function (see Section 3.3), only bit matrices
consisting of the isolated bit (→ power of two) are to be used. Therefore,
the magic multiplier must generate unique magic indices only for these few 64
different bit matrices.

This section contains two subsections. In Subsection 3.5.1 the reader will be
introduced in two competing bit scan implementations. In Subsection 3.5.2 we
will develop and implement a corresponding magic hash algorithm for a bit scan.

3.5.1 Bit Scan Forward | Reverse

For the implementation of an efficient bit scan forward there are basically only
two competing solutions: (1) the implementation via access to the native ver-
sions in hardware (→ bit scan intrinsic functions according to Microsoft) or
(2) the construction of a suitable magic hash algorithm. Admittedly, native
hardware implementations can be more efficient on a suitable computer envi-
ronment. However, they are also quite specific and thus less portable between
different computer platforms (→ x86, x64, Extended Memory 64 Technology
(EM64T), Itanium Processor Family (IPF) [10]). Implementations in hardware
via assembler instructions (→ BSF or BSR) or intrinsic functions, such as

unsigned char BitScanForward (
unsigned long * Index ,
unsigned long Mask) ;

unsigned char BitScanReverse (
unsigned long * Index ,
unsigned long Mask) ;

or in particular for 64-bit masks

unsigned char BitScanForward64 (
unsigned long * Index ,
unsigned int64 Mask) ;

unsigned char BitScanReverse64 (
unsigned long * Index ,
unsigned int64 Mask) ;

are not available on all computer environments. We give our implementation in
Subsection 3.5.2.

4In the further course of this chapter the acronym LSB will be used for least significant
bit, rightmost bit , or low order bit . The acronym MSB will be used for most significant bit,
leftmost bit , or high order bit .
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3.5.2 Bit Scan Forward Implementation

Our implementation of a bit scan forward via an entire magic hash algorithm
consists of (1) a function for the initialisation of the hash table for a suitable
magic multiplier, (2) the magic hash function for the computation of the unique
magic indices, and (3) the bit scan forward function. The bit scan forward
function retrieves the bit position after the isolation of the LSB with the magic
hash function (see Section 3.3) and the initialised hash table.

The algorithm in the source-code listing of Figure 3.10 initialises a magic hash
table

int magi c hash tab l e [ 6 4 ] ,

which contains all possible bit positions of an isolated bit of a 64-bit unsigned in-
teger. Like in many programming languages, the first bit carries the bit position
0. From the bit matrix consisting of the isolated bit

uint64 i s o l a t e d b i t

and the specific magic multiplier

const uint64 magic = HEX(0x218A392CD3D5DBF)

the magic hash function

int magi c funct i on (uint64 i s o l a t e d b i t , uint64 magic , int s i z e )

computes the unique magic index:

int magic index

Finally, the unique magic index addresses the hash table in order to store the
information of the bit position. These steps are repeated for all 64 possible
power of two bitboards in a loop. With this straightforward hash function
further information about squares or bit positions on the chessboard can be
managed easily in more extensive hash patterns. The source-code listing of a
magic hash function is shown in Figure 3.9, which is based on the rules dealt
with in Section 3.3.5

Perfect Bit Scan Hash Function

// generat e a unique magic index based on the mag i c mu l t i p l i e r
int magi c funct i on (uint64 i s o l a t e d b i t , uint64 magic , int s i z e ) {

return ( i s o l a t e d b i t * magic ) >> (64 − s i z e ) ;
}

Figure 3.9: Source-code listing for a magic hash function which maps an isolated
bit to a unique magic index.

The bit scan forward function

int b i t s can f o rward (uint64 bitboard )

5Thanks to Tord Romstad for this magic multiplier of a 64-bit bit scan.
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Perfect Bit Scan Hash Initialisation

// i n i t i a l i s e the look−up t a b l e f o r our magic b i t scan
void i n i t i a l i s e b i t s c a n f o r w a r d (void ) {

uint64 i nput key = 1 ;
uint64 magic = HEX(0x218A392CD3D5DBF) ;
// we need 6 b i t s to address a number 0−63
int s i z e = 6 ;
int magic index ;
int b i t p o s i t i o n ;
for ( b i t p o s i t i o n = 0 ; b i t p o s i t i o n < 64 ; b i t p o s i t i o n++) {

magic index = magi c funct i on ( input key , magic , s i z e ) ;
mag i c hash tab l e [ magic index ] = b i t p o s i t i o n ;
i nput key = input key << 1 ;

}
}

Figure 3.10: Source-code listing for magic hash table initialisation for a magic
bit scan.

in the source-code listing of Figure 3.11 can only be applied after the initialisa-
tion of the magic hash table:

int magi c hash tab l e [ 6 4 ]

The only parameter passed into this function

uint64 bitboard

is a bit matrix. The LSB is isolated from this bit matrix by means of the two’s
complement [51].6 Finally, the unique magic index for access to the hash table
is computed by calling the magic hash function from the source-code listing of
Figure 3.9. Although the bit position is the only return value of this function,
more extensive information with exactly the same algorithm can be stored.

Efficiency requirements for a bit scan, which should compete with a native im-
plementation, are quite high. Access to the hash table via magic multiplication
on a respective computer environment meets these high requirements and is,
above all, very flexible [37]. Analogous implementations of hash tables can be
used without caution within the scope of an algorithm, as long as information
about the bit position is not required. Otherwise the indexing of a linear vector
via the bit position is, of course, more reasonable.

3.6 Magic Hash Functions for Sliding Directions

The theory of the unique magic index was introduced in Section 3.3. Based on
the calculation of the hash index for (combined) sliding directions according to
Equations 3.10, 3.11, and 3.12, universal implementations with minimal array
access (see Subsection 3.6.1) and homogeneous array access [30] (see Subsection
3.6.2) will be developed subsequently. Moreover, the technical differences of
both array accesses will be compared.

6The isolation of the LSB could produce a compiler warning (Microsoft): ”unary minus
operator applied to unsigned type, result still unsigned”.
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Perfect Bit Scan Hash Implementation

// use b i t scan forward func t ion ( hash t a b l e i s i n i t i a l i s e d )
int b i t s can f o rward (uint64 bitboard ) {

// the next l i n e o f code could produce a compi ler warning :
uint64 i s o l a t e d b i t = bitboard & −bitboard ;
uint64 magic = HEX(0x218A392CD3D5DBF) ;
int s i z e = 6 ;
int magic index ;
magic index = magi c funct i on ( i s o l a t e d b i t , magic , s i z e ) ;
int b i t p o s i t i o n = magi c hash tab l e [ magic index ] ;
return b i t p o s i t i o n ;

}

Figure 3.11: Source-code listing for a 64-bit bit scan forward function.

3.6.1 The Minimal Array Access Implementation

The minimal array access will be dealt with in this subsection. The implementa-
tion contains both the function for the initialisation of the single sub-hash tables
and the magic hash function for the minimal array access. The magic hash table
for (combined) sliding directions is initialised in the source-code listing of Figure
3.12. The vector

int s l i d i n g o f f s e t i n d e x [ 6 4 ]

is initialised according to Equation 3.10 iteratively by summation of single offsets
in an outer loop. The vector

int s l i d i n g s h i f t [ 6 4 ]

contains the difference between 64 and the number of bits (64 − bits(square))
according to the matrices of Figure 3.7. The inner loop initialises the sub-hash
tables. The computation of the magic index is done according to Equation 3.11.
The function

uint64 gene r a t e b l o cke r s ( int index , int bi t s , uint64 mask )

will be explained later in Subsection 3.7.3, within the context of the trial-and-
error algorithm for computing magic multipliers. This function generates an
input key for every possible index between 0 and offset (0 ≤ index < offset).
The vector

uint64 s l i d i n g b i t b o a rd [ 6 4 ]

contains the bit masks for blocker squares. The magic mapping for the com-
putation of unique magic indices does not have to be written explicitly with
brackets, since both the multiplication operator and the addition or subtrac-
tion operator have higher priority than shift operators.7 The hash table for the
initialisation of sub-hash tables according to Equation 3.12 is accessed via

s l i d i ng move ha sh tab l e [ o f f s e t i n d e x + magic index ] .

7For more information about the priority of arithmetic operator see: http://www.

cplusplus.com/doc/tutorial/operators.html, 2007.



3.6. MAGIC HASH FUNCTIONS FOR SLIDING DIRECTIONS 57

Finally, the function

g e n e r a t e s l i d i n g a t t a c k ( square , b i tboard )

calculates the hash entry of the sub-hash table of the corresponding squares

uint64 bitboard

that fits the input key. The functions for the generation of sliding attacks are
listed in Appendix A.2 of this thesis.

Initialisation of Magic (combined) Sliding Directions

void i n i t i a l i s e s l i d i n g d i r e c t i o n s (void ) {
int o f f s e t i n d e x = 0 ;
// i n i t i a l i s e the 64 sub−hash t a b l e s
for ( int square = 0 ; square < 64 ; square++) {

// update the o f f s e t −index vec tor
int o f f s e t = int (1 << 64 − s l i d i n g s h i f t [ square ] ) ;
s l i d i n g o f f s e t i n d e x [ square ] = o f f s e t i n d e x ;
// loop through a l l p o s s i b l e occupancy b i t s
for ( i = 0 ; i < o f f s e t ; i++) {

uint64 bitboard = gene r a t e b l o cke r s ( i , 64− s l i d i n g s h i f t [
square ] , s l i d i n g b i t b o a r d [ square ] ) ;

magic index = bitboard * s l i d i ng mag i c [ square ] >>

s l i d i n g s h i f t [ square ] ;
s l i d i ng move ha sh tab l e [ o f f s e t i n d e x + magic index ] =

g e n e r a t e s l i d i n g a t t a c k ( square , b i tboard ) ;
}
o f f s e t i n d e x+=o f f s e t ;

}
}

Figure 3.12: Source-code listing for magic hash table initialisation of magic
(combined) sliding directions.

Access to the initialised hash table is presented in the source-code listing of
Figure 3.13. The fitting sub-hash table is addressed by the input key of the
square via the minimal array access. In addition to this offset, only the central
bits from the input key

const uint64 b l o cke r s

are extracted as the edge squares are ignored in the magic multiplication [30].

3.6.2 The Homogeneous Array Access Implementation

The homogeneous array access implementation differs only insignificantly from
the minimal array access implementation. While the hash table of the minimal
array access implementation is to be implemented according to Subsection 3.3.2
as

uint64 minimal hash tab l e [ 1 0 2 4 0 0 ] ; // 800 kb

the same hash table has to be defined as a two-dimensional vector [30, page 6]
with:
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Minimal Array Access Implementation

uint64 g e t s l i d i n g d i r e c t i o n ( const int square , const uint64

b l o cke r s ) {
uint64 bitboard = b l o cke r s & s l i d ing mask [ square ] ;
int o f f s e t i n d e x = s l i d i n g o f f s e t i n d e x [ square ] ;
int magic index = bitboard * s l i d i ng mag i c [ square ] >>

s l i d i n g s h i f t [ square ] ;
return s l i d i ng move ha sh tab l e [ o f f s e t i n d e x + magic index ] ;

}

Figure 3.13: Source-code listing for the magic hash table usage of magic (com-
bined) sliding directions.

uint64 homogeneous hash table [ 6 4 ] [ 4 0 9 6 ] ; // 2.0 mb

Further differences during initialisation and addressing of the hash table are
obvious: as the offset-index vector is no longer applied (see Equation 3.9), both
functions are simplified at the expense of the additional memory increase (see
Subsection 3.3.2). Differences in time consumption of both implementations
were not measurable in the scope of an entire computer-chess architecture (→
Loop Amsterdam) with accuracy of ≤ ±1%.

3.7 Generation of Magic Multipliers

In this section an algorithm for the generation of magic multipliers for the
computation of the unique magic indices is presented. A magic multiplier is
designated as optimally magic multiplier, when the computed unique magic
indices consist of a minimum number of bits [30, page 7]. An optimal magic
multiplier maps a bitboard (→ input key) into the smallest possible value range
(→ output), whereby the size of the corresponding hash table is minimal as well.

The following algorithm for the generation of magic multipliers consists of sev-
eral functions. The functions for the generation of masks (file masks, rank
masks, and diagonal masks) and attacks (file attacks, rank attacks, and di-
agonal attacks) are not presented explicitly since their deterministic mode of
operation is not part of the trial-and-error approach. These functions are listed
in Appendix A.2 of this thesis.

The algorithm for the generation of optimal magic multipliers has a great num-
ber of parameters that affect the generation of magic multiplier and optimal
magic multiplier. It is possible to determine exactly the number of ones, which
a magic multiplier consists of. Likewise, the number of these one-bits can be
arranged in a firmly stipulated interval.

This section contains four subsections. In Subsection 3.7.1 an algorithm for the
generation of pseudo-random 64-bit numbers will be presented. These pseudo-
random 64-bit numbers are necessary for the generation of magic multipliers.
Only when a pseudo-random number maps all entries of a vector unequivocally,
the pseudo-random number is regarded as a magic multiplier. In Subsection
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3.7.2 bitboards will be mapped into unique indices by applying the magic func-
tion. The generation of possible blockers will be performed in Subsection 3.7.3.
Finally, in Subsection 3.7.4 our trial-and-error function can be presented and
discussed.

3.7.1 Generation of Pseudo-random 64-bit Numbers

The generation of pseudo-random 64-bit numbers in the function

uint64 r andom uint64 one b i t s ( int one b i t s )

in the source-code listing of Figure 3.14 is controlled via passing the only pa-
rameter:

int one b i t s

The return value of this function is saved in the 64-bit unsigned integer

uint64 r e s u l t

and contains exactly the indicated number of one-bits (biti = 1)

int one b i t s

in pseudo-random order. The optimal number of one-bits can be determined
in this way, in order to compute quickly a set of optimal magic multipliers
for a given problem, such as magic rook hash. A set consists of 64 magic
multipliers, since a single magic multiplier is required for every single square of
the chessboard.

The function

int rand (void )

in the inner while-loop returns a pseudo-random integer in the range 0 ≤ n ≤
32767.8

3.7.2 Mapping Bitboards into Unique Magic Indices

During the generation of magic multipliers exactly the same magic function is
required, which is used to access the magic hash table later in the computer-
chess architecture. The input of the magic mapping function in the source-code
listing of Figure 3.15 is a bitboard

uint64 bitboard

and the corresponding magic multiplier:

uint64 magic

The optional parameter

int b i t s

8Compare to http://www.cplusplus.com/reference/clibrary/cstdlib/rand.html.
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Generator for Pseudo-random 64-bit Numbers with n One-Bits

uint64 r andom uint64 one b i t s ( int one b i t s ) {
uint64 power of two ;
uint64 r e s u l t = 0 ;
// repeat t h i s process u n t i l a l l pseudo−random one−b i t s are

generated
for ( int i = 0 ; i < one b i t s ; i++) {

while ( true ) {
power of two = uint64 (1) << uint64 ( rand ( ) & 63) ;
i f ( ( r e s u l t & power of two ) == 0) {

r e s u l t |= power of two ;
break ;

}
}

}
return r e s u l t ;

}

Figure 3.14: Source-code listing for a generator for pseudo-random 64-bit mul-
tipliers with exact n one-bits.

is included for the purpose of generalisation of the magic mapping function. By
passing the number of bits, it is determined into which value range the input
key is mapped. The return value of this magic mapping function is a unique
magic index for addressing the corresponding hash table.9

Magic Mapping Function

int magi c funct i on (uint64 bitboard , uint64 magic , int b i t s ) {
return int ( ( bi tboard * magic ) >> (64 − b i t s ) ) ;

}

Figure 3.15: Source-code listing for a magic hash function to address the magic
hash tables.

3.7.3 Generation of Possible Blockers

The function

uint64 gene r a t e b l o cke r s ( int index , int bi t s , uint64 mask )

in the source-code listing of Figure 3.16 generates all possible combinations of
blockers for the sliding mask of a certain square. The sliding mask

uint64 mask

is a combination of sliding directions. This function generates, for example a
bitboard for a combined file-rank mask (→ rook mask) of a respective square
depending on the number of bits:

9The implementation of our magic mapping function of the source-code listing of Figure
3.15 is identical with the magic mapping function of the source-code listing of Figure 3.9.
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int b i t s

Generator for Sliding Bit Combinations for a Square

uint64 gene r a t e b l o cke r s ( int index , int bi t s , uint64 mask) {
int square ;
uint64 bitboard = 0 ;
// loop through a l l p o s s i b l e b i t combinat ions
for ( int i = 0 ; i < b i t s ; i++) {

square = f i n d f i r s t b i t a n d c l e a r (mask) ;
i f ( index & (1 << i ) ) b i tboard |= squa r e to b i tboa rd ( square ) ;

}
return bitboard ;

}

Figure 3.16: Source-code listing for generation of all possible bit combinations
for a special square with several sliding directions.

3.7.4 Generation of Magic Multipliers

After the most important functions for the trial-and-error based algorithm for
the generation of magic multipliers have been developed, the trial-and-error
function can be presented now.

The function

uint64 f i n d mag i c mu l t i p l i e r ( int square , int one b i t s )

in the source-code listing of Figure 3.17 receives as an input only one square
(a1-h8 → 0-63) and the exact number of one-bits, which the magic multiplier is
supposed to consist of. The corresponding magic multiplier is the return value
of this function. This function calls the two functions in the first part of the
initialisation.

uint64 generate mask ( int square )
uint64 gene r a t e a t ta ck ( int square )

The source codes of these functions are listed in Appendix A.2 because they are
of basic deterministic origin and do not concern the trial-and-error approach.
The masks generated via the function call

uint64 generate mask ( int square )

consist of bit strings for single or combined sliding directions. The blocker vector

uint64 b l o cke r s [ 4 0 9 6 ]

is initialised with all possible bit combinations of respective combined sliding
directions. Furthermore, the entries of the blocker vector are passed on to the
function for the generation of combined sliding attacks:

uint64 gene r a t e a t ta ck ( int square , uint64 b l o cke r s ) .

The vector for the management of bitboards with the combined sliding attacks
of a respective square
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uint64 s o l u t i o n [ 4 0 9 6 ]

is also initialised in this initialisation loop. After the initialisation, an infinite
trial-and-error iteration is implemented. In this case, the use of a temporary
vector

uint64 used [ 4 0 9 6 ]

is important. With the help of this temporary vector, possible collisions in
the magic hash table are checked during each trail-and-error iteration. The
generated pseudo-random 64-bit number

uint64 magic

consisting of a fixed number of one-bits

int one b i t s

must now be able to produce a unique magic index for every entry of the blocker
vector. If the calculated index

int index

leads to an unintended collision in the hash table, the trial-and-error iteration
will be terminated then, and a new pseudo-random number will be generated.10

Only when this pseudo-random number maps all entries of the blocker vector
without unintended collision, the pseudo-random number is regarded as the
magic multiplier. With this magic multiplier is it possible to address all entries
of the solution vector.

3.8 Experiments with Magic Multiplier Sets11

The generation of magic multipliers for single squares of a chessboard is im-
plemented via the trial-and-error algorithm dealt with in Section 3.7. As soon
as all magic multipliers for the entire chessboard (→ 64 squares) and a com-
bination of sliding directions are computed, we obtain a complete magic mul-
tiplier set. Only two magic multiplier sets for the Bishops and the Rooks are
required for the implementation of a magic-bitboard-based computer-chess ar-
chitecture. The implementation of a magic multiplier set for the Queen occurs
via arithmetic or logical operation (→ arithmetic plus, logical or) of the bishop
bitboard and the rook bitboard. The implementation of single sliding direc-
tions (a1h1, a1a8, a1h8, h1a8) occurs via unmasking (→ logical and) of the
respective bishop bitboard or rook bitboard. Some tests within the computer-
chess architecture of Loop Amsterdam have shown that the explicit imple-
mentation of a1h1, . . ., h1a8 sliding directions does not lead to any measurable
speed advantages, and thus does not have to be implemented explicitly. A small
advantage in storage space and less redundant information in the magic hash
tables are two positive side effects of this architecture.

10When at least two entries of a blocker vector are mapped into the same hash address and
the solution bitboards are different, we speak about an unintended collision.

11The results of the following experiment were presented at the Ph.D. Day at the Tilburg
University, 2008.
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Trial-and-Error Algorithm for Generation of Magic Multipliers

uint64 f i n d mag i c mu l t i p l i e r ( int square , int one b i t s ) {
uint64 b l o cke r s [ 4 0 9 6 ] ;
uint64 s o l u t i o n [ 4 0 9 6 ] ;
uint64 used [ 4 0 9 6 ] ;
uint64 mask ;
uint64 magic ;
bool f a i l e d ;
int index ;
int b i t s ;
int i ;
// i n i t i a l i s e f i l e , rank or d iagona l masks and t h e i r b i t s
mask = generate mask ( square ) ;
b i t s = count b i t s (mask ) ;
// i n i t i a l i s e a b l oc k e r s vec tor and a s o l u t i on vec tor
for ( i = 0 ; i < (1 << b i t s ) ; i++) {

b l o cke r s [ i ] = gene r a t e b l o cke r s ( i , b i t s , mask ) ;
s o l u t i o n [ i ] = gene r a t e a t ta ck ( square , b l o cke r s [ i ] ) ;

}
// s t a r t t he t r i a l −and−error i t e r a t i o n
while ( true ) {

magic = random uint64 one b i t s ( one b i t s ) ;
for ( i = 0 ; i < (1 << b i t s ) ; i++) used [ i ] = 0 ;
f a i l e d = fa l se ;
for ( i = 0 ; i < (1 << b i t s ) ; i++) {

index = magi c funct i on ( b l o cke r s [ i ] , magic , b i t s ) ;
i f ( used [ index ] == 0) used [ index ] = s o l u t i o n [ i ] ;
else i f ( used [ index ] != s o l u t i o n [ i ] ) {

f a i l e d = true ;
break ;

}
}
// did we f i nd a magic mu l t i p l i e r f o r t h i s square ?
i f ( f a i l e d == fa l se ) return magic ;

}
}

Figure 3.17: Source-code listing for a trial-and-error algorithm for generation of
magic multipliers for sliding directions.
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This section contains two subsections. In Subsection 3.8.1 magic multiplier sets
with n ≥ 6 bits for bishops and rooks are generated via the trial-and-error
approach from Section 3.7. In Subsection 3.8.2 magic multiplier sets with n ≤ 6
bits for bishops and rooks are generated by using a brute-force determinism.

3.8.1 Magic Multiplier Sets with n ≥ 6 Bits

In Table 3.1 the runtime performance of the generation of two magic multiplier
sets for Bishops and Rooks is listed. The number of the bits

int one b i t s

is entered in the first column; by this instruction multipliers were generated via
the function call:

uint64 r andom uint64 one b i t s ( int one b i t s )

For the generation of a magic multiplier set for Bishops 100 pseudo-random
trial-and-error runs were executed in order to obtain a result of measurement
as precise as possible. In the same way, 100 pseudo-random trial-and-error runs
for the generation of the magic multiplier set for Rooks were carried out. The
pseudo-random generator

int rand (void )

was initialised via the function call, prior to the generation of a new magic
multiplier set,

void srand (unsigned int seed )

in order to exclude to a large extent falsifying random effects for this experi-
ment.12 The trial-and-error runs for every magic multiplier set were thus carried
out each time with another sequence of pseudo-random 64-bit numbers. Fre-
quently, it was observed that during the generation of more sophisticated magic
rook multipliers the generation time of magic multipliers with a higher number
of bits (e.g., n ≥ 13) for corner squares (→ a1, h1, a8, h8) was higher. This
might lead to slight deviations in the results of measurement.

In columns 2 and 5 the CPU times in milliseconds (ms) for the generation of
each of 100 magic multiplier sets are listed. In columns 3 and 6 the average CPU
times for the generation of the magic multiplier sets are displayed. Column 4
and 7 show the relative CPU times that are required for the generation of magic
multiplier sets with exactly n one-bits. In this case, the average CPU time for
the generation of the magic multiplier set with the least number of bits was
defined as 100%. At least 6 bits are needed in the trial-and-error experiment for
an optimal magic multiplier set of a Bishop. At least 7 bits are needed in the
trial-and-error experiment for an optimal magic multiplier set of a Rook. The
generation of a magic multiplier set with n ≥ 15 bits was not possible with this
trial-and-error approach without additional filter conditions.

12For more information see: http://www.cplusplus.com/reference/clibrary/cstdlib/

srand.html.
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Generation of Magic Multiplier Sets with n Bits

Bishop-Sliding Rook-Sliding

n = 100 n = 1 n = 100 n = 1

n bits time (ms) relative (%) time (ms) relative (%)

6 30,650 306 100 n/a n/a n/a

7 14,480 144 47 264,060 2,640 100

8 9,370 93 31 162,900 1,629 62

9 8,430 84 28 157,020 1,570 59

10 9,320 93 30 163,990 1,639 62

11 9,200 92 30 190,300 1,903 72

12 11,140 111 36 227,310 2,273 86

13 10,120 101 33 397,060 3,970 150

14 16,230 162 53 538,120 5,381 204

15 27,120 271 88 660,940 6,609 250

Table 3.1: Generation of n-bit magic multiplier sets for bishop sliding and rook
sliding via trail-and-error approach.

3.8.2 Magic Multiplier Sets with n ≤ 6 Bits

In the trial-and-error function

uint64 f i n d mag i c mu l t i p l i e r ( int square , int one b i t s )

in the source-code listing of Figure 3.17 it is possible to filter the generated
pseudo-random numbers

magic = random uint64 one b i t s ( one b i t s )

before further processing. For this reason, the implementation of necessary
filter conditions on a magic multiplier is reasonable. For example, a necessary
condition can check qualities of the magic product.

magic product = mask * random number

The following filter condition

i f ( coun t b i t s ( ( magic product ) & 0xFFFF000000000000 ) < 8)

filters during the generation of the magic rook multiplier 41 to 50% of all pseudo-
random numbers. During the trial-and-error search of the generation of the
magic bishop multipliers even 39 to 67% of the pseudo-random numbers can be
extracted in this way.13 With this additional condition it is possible to generate
magic bishop multipliers with up to 19 bits. During the generation of the
magic rook multipliers no progress with regard to the number of bits could be
achieved. The condition counts all active bits of the uppermost 16 bit positions
of the magic product via masking. This condition works quite efficiently since
these upper 16 bits are required for the computation of the unique magic index
with the right shift.

13Thanks to Tord Romstad for the hint about filter conditions.
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At this point, the question as to what happens while generating magic mul-
tipliers with n ≤ 6 bits for Rooks and n ≤ 5 bits for Bishops remains to be
answered. Magic multipliers with a minimum number of bits cannot be effi-
ciently generated with the trial-and-error approach from Section 3.7. With a
basic brute-force determinism, that tests all bit combinations for 64-bit magic
multipliers with 1 ≤ n ≤ 6 bits, we can generate all possible magic multipliers
in this way (see Appendix B). It is interesting to generate magic multiplier sets
for Bishops and Rooks with this approach that produces the magic multiplier
with the minimum number of bits for every square.

In Figure 3.18 the results of this experiment are summarised for the sliding
Bishop optimal magic multiplier set. Each single element of this matrix de-
scribes the minimum number of bits which an optimal magic multiplier must
have for one square. Therefore, a minimal magic multiplier set for Bishops
consists of 3 ≤ n ≤ 6 bits. The point symmetry of the number of bits in the
centre of the chessboard is quite interesting. At least 6 bits are necessary for
the magic multipliers of corner squares (→ a1, h1, a8, h8) in order to map a
unique magic index.

Minimal n Bits for Sliding Bishop Optimal Magic Multipliers

3−4−bits
︷ ︸︸ ︷

− − 4 3 3 4 − −

− − 4 3 3 4 − −

− − − 4 4 − − −

− − − 4 − − − −

− − − − 4 − − −

− − − 4 4 − − −

− − 4 3 3 4 − −

− − 4 3 3 4 − −

5−6−bits
︷ ︸︸ ︷

6 5 − − − − 5 6

5 5 − − − − 5 5

5 5 5 − − 5 5 5

5 5 5 − 5 5 5 5

5 5 5 5 − 5 5 5

5 5 5 − − 5 5 5

5 5 − − − − 5 5

6 5 − − − − 5 6

Figure 3.18: Minimal number of n bits for the optimal magic multipliers for a
sliding Bishop on a chessboard.

In Figure 3.19 the results of this experiment for the sliding rook optimal magic
multiplier set are summarised. Unlike the matrix of a bishop set, no obvious
symmetries exist here.

3.9 Answer to Research Question 2

In this chapter it was introduced how perfect hash functions can be used within
the scope of a state-of-the-art computer-chess architecture. The requirements
on the runtime efficiency of a respective hash function are high as almost the
entire computer-chess architecture of a computer-chess engine is based on basic
computation, such as scanning bits (see Section 3.5) or the generation of (com-
bined) sliding attacks (see Section 3.6). These considerations bring us back to
the second research question. Below we will give our conclusions and recom-
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Minimal n Bits for Sliding Rook Optimal Magic Multipliers

4−bits
︷ ︸︸ ︷

− − − − − − − −

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 −

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 −

4 4 4 4 4 4 4 4

− 4 − − − − 4 −

5−6−bits
︷ ︸︸ ︷

6 6 6 6 6 5 5 6

− − − − − − − −

− − − − − − − 5

− − − − − − − −

− − − − − − − −

− − − − − − − 5

− − − − − − − −

5 − 5 5 5 5 − 5

Figure 3.19: Minimal number of n bits for the optimal magic multipliers for a
sliding Rook on a chessboard.

mendations for future developers.

In the last few years we have witnessed a trend towards the development of
knowledge-based computer chess architectures, although this can hardly be
proved empirically without an insight into source codes of the leading computer-
chess engines. The trend towards implementing more knowledge at the cost of
speed [15] has become quite popular among computer-chess engine developers.
With regard to this trend and the continuously increasing complexity of the al-
gorithms, the choice of a suitable computer-chess architecture at the beginning
of a new development can be decisive for the later success and the further devel-
opment. This trend is certainly, among other universally possible applications
of Magic Bitboards [21, page 9], a main reason for the intensive developments
of this technology by Kannan et al. [36, 44].

Conclusions Research Question 2

In order to be able to better understand the magic multiplication, it is necessary
to gain a deeper understanding of multiplications of unsigned integers with
overflow in mathematical rings (see Subsections 3.2.2 and 3.2.3). While the
generation of magic multipliers for the multiplication with a power of two was
possible even manually in Section 3.4, the generation of multipliers for the index
mapping of integers in Section 3.8 was more extensive. The research of bit
patterns at the end of Section 3.8 is only a first step in order to improve our
understanding of this complex process. Yet, we may conclude that our magic
hash functions for sliding directions with minimal and homogeneous array access
(see Section 3.6) make full use of bitboards.

Future Research

In this chapter the sizes of the sub-hash tables have been defined according to
the results presented in Subsection 3.3.2. The size of the hash table is exponen-
tially dependent on the number of possible blocker squares (excluding the edge
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squares). In fact, we may state that there are 2blocker squares permutations for
the input key. However, there are only maximal 4 × 3 × 3 × 4 = 144 different
bitboards for a sliding Rook in one sub-hash table (see Table 3.2). This means
that the same bitboards are addressed by different input keys in different hash
entries.

In Table 3.2 the minimal necessary sizes of single sub-hash tables for a sliding
Rook are summarised. In the first column and the last row the factors are
entered that produce the 8 × 8 chessboard matrix when multiplied by each
other. The orientation is to be contemplated from White’s point of view (of
course it is symmetric for Black’s point of view). For the better understanding,
the multiplication is split up in such a way that the sum of the factors always
amounts to 14 (→ 14 sliding squares).

Minimal n Bits for Sliding Rook Optimal Magic Multipliers

×7 49 42 70 84 84 70 42 49

×6 × 1 42 36 60 72 72 60 36 42

×5 × 2 70 60 100 120 120 100 60 70

×4 × 3 84 72 120 144 144 120 72 84

×3 × 4 84 72 120 144 144 120 72 84

×2 × 5 70 60 100 120 120 100 60 70

×1 × 6 42 36 60 72 72 60 36 42

×7 49 42 70 84 84 70 42 49

×7 ×6 × 1 ×5 × 2 ×4 × 3 ×3 × 4 ×2 × 5 ×1 × 6 ×7

Table 3.2: Minimal number of n bits for optimal magic multipliers for a sliding
Rook on a chessboard.

Table 3.2 could be an interesting approach for future research. Thus, a sliding
Rook has 212 = 4096 different input keys on a corner square (→ square ∈ C
according to the equations in Figure 3.7). However, according to Table 3.2
there are only 7× 7 = 49 different bitboard entries. Other squares show a more
unfavourable relation, that is why corner squares and edge squares are the most
interesting ones to examine. The reduction of the size of sub-hash tables is
already a debated issue in internet developer forums [36, 44]. It is likely that it
is impossible to penetrate in such minimal-size orders of the sub-hash tables.14

However, via the generation of more appropriate magic multipliers, it could be
possible to reduce the size of some sub-hash tables to around 1 to 2 bits.

14Hereby the next possible power of two is meant, which means that a minimal hash table
of 256 entries must be chosen for 144 entries.



Chapter 4

Static Exchange Evaluation

The main objective of Chapter 4 is to answer the third research question on
the basis of the R&D of a straightforward and quite efficient static exchange
evaluator (SEE) for the computer-chess engine Loop Amsterdam 2007. Below
we repeat the third research question.

Research question 3: How can we develop an αβ-approach in
order to implement pruning conditions in the domain of static ex-
change evaluation?

In this chapter the αβ-approach, which is the basis of a computer-chess search
[4], will be applied to an iterative SEE. With the SEE, moves and in particular
capture moves on a threatened destination square can be evaluated materially
in an exact way. The SEE algorithm works according to deterministic rules
and considers only threats and attacks during the evaluation of a move that
aim at the destination square. Because the computation of threats and attacks
is time consuming and the code is quite complicated, the development of the
SEE is interesting for sophisticated implementations of chess knowledge in a
state-of-the-art computer-chess architecture. The results of the SEE are quite
precise. The application of the SEE algorithm is straightforward and the field
of application is enormous (e.g. move ordering, evaluation, forward pruning,
etc.) (see Section 4.5). Only with an iterative αβ-approach pruning conditions
can be implemented into the SEE, whereby the procedure becomes clearly more
efficient.

Current computer-chess engines use complicated algorithms for coding chess
knowledge. The SEE is a good example of those algorithms which are currently
in use. It is therefore an interesting algorithm to study, and since it is widely
used, its improvements are relevant to the computer-chess community.

The applied data structures must be able to supply quickly all necessary infor-
mation about threats, attack possibilities, and hidden attackers. This informa-
tion is evaluated recursively or iteratively in further algorithmic steps. Due to
the diverse possible applications of the SEE, it is interesting to scrutinize the
complex algorithm and extensive possibilities of the implementation within the
scope of a state-of-the-art computer-chess architecture.

69
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In this chapter the major focus will not be on the details of the implementation
of the SEE. Our scientific research discusses only those data structures and
implementations which are related to the recursive and iterative computation
within the αβ-SEE. Therefore, in this chapter no attention is paid to specific
implementations of the SEE, such as a bit scan-free x-ray SEE [31].

In Section 4.1 the general SEE algorithm is introduced. Besides important
definitions, two competitive alternatives of the implementation (→ recursion
or iteration) are developed and compared. In Section 4.2 the iterative αβ-
approach and the pruning conditions resulting from that are investigated and
further developed. In Section 4.3 the iterative implementation of the SEE with
all pruning conditions is examined. It is based on the αβ-approach from Section
4.2.

The emphasis of Section 4.4 is on a comparison of the quantitative α-pruning
with the new approach of the qualitative β-pruning.1 In Section 4.5 some typ-
ical application fields of the SEE are presented, as they are implemented, for
instance, in Loop Amsterdam, Loop Express, Glaurung (Romstad, 2008)
or Fruit (Letouzey, 2005). Some empirical measurements are given in Sec-
tion 4.6 with regard to the time consumption of the SEE in the state-of-the-art
computer-chess engine Loop Amsterdam. In Section 4.7 an analysis of com-
bined pruning conditions is provided. In Section 4.8 the results of our research
are summarised. Different possibilities of the implementation based on the in-
troduced technologies are evaluated and discussed. Finally, the third research
question is answered.

4.1 The Static Exchange Evaluation Algorithm

The SEE computes the value of a square on a chessboard based on the balances
of power that affect this square. The involved pieces determine these balances
of power and possess particular qualities (→ capture direction, x-ray attacks,
promotion, etc.) that must be processed algorithmically in different ways. If
several pieces of both parties (White and Black) simultaneously threaten the
same square, different factors will have to be considered in the SEE. The result
of the SEE is a material evaluation from the point of view of the side to move.
The remaining squares of the chessboard, which are not affected by the SEE,
are ignored. Therefore, the trivial αβ-tree of Figure 4.1 has no branching and
no time-complex behaviour. At a left child the tree stops and at a right child
the next capture move is done.

For proper readability we give a straightforward example (see Figure 4.2) that
is used later on, too. In order to work with consistent terms in the further
course of this chapter, different piece types and their performance influencing
factors during a static exchange evaluation will be subsequently explained (see
Subsection 4.1.1). Moreover, recursive algorithms and iterative algorithms will
be introduced with the help of samples in Subsections 4.1.2 and 4.1.3, in order
to evaluate algorithmic advantages and disadvantages.

1Kannan presented a bounded ”alphabeta-like” SEE in the Winboard Forum, 2007 [31].
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The Trivial αβ-Tree

first capture

stop next capture

stop next capture

stop next capture

stop next capture...

Figure 4.1: The trivial αβ-tree without time-complex behaviour for the SEE.

4.1.1 Definitions

The position of the sample chessboard in Figure 4.2 was extracted from a Si-
cilian Opening (ECO = B51).2 This position occurred in round 4 between
Loop Amsterdam and Rybka during the 15th World Computer-Chess Cham-
pionship, Amsterdam (NL) 2007 (see Appendix C.2) and is used to exemplify
the following definitions.

Definition 1: The Blocker

A blocker is a piece which blocks another friendly or opposing sliding piece
(slider) from arriving at a destination square. In Figure 4.2 the white Rook on
square d3 is the blocker of the white Rook on square d1 in a1a8-direction and
of the black Rook on square d8 in a8a1-direction.

Definition 2: The Direct Attacker

A direct attacker can move directly onto a destination square. In Figure 4.2
the white Rook on square d3 is a sliding direct attacker of the black Rook on
square d8. If the white Rook moves onto square e3, the white Rook on square
d1 and the black Rook on square d8 also become direct attackers concerning
the respective opposing Rook.3

Definition 3: The Indirect Attacker (X-Ray Attacker)

An indirect attacker can also be designated as an x-ray attacker according to
Hyatt, and is always a sliding piece, that is blocked by at least one blocker from

2ECO: Encyclopedia of Chess Openings.
3We do not explicitly take into account if an attacking piece is pinned.
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moving onto a destination square.4 Only when this blocker capitulates from
the source-destination direction (but is not captured, otherwise a new blocker
emerges), the indirect attacker becomes the direct attacker. Affected by the
blocker on square d3 in Figure 4.2, the white Rook on square d1 is an indirect
attacker of the black Rook on square d8. In reverse, the black Rook on square
d8 is the indirect attacker of the white Rook on square d1.

Definition 4: Material Value

If a direct attacker has a smaller material value than the attacked piece, then
by the capture move a material profit is secure in any case, since the aggressor
can lose only his attacker. In this case, one speaks according to Heinz [24] of
a aggressor-victim relationship. The more favourable this relationship is for
the aggressor (aggressor ≤ victim), the more valuable the capture move is.
For the possible case (aggressor > victim), it is necessary to analyse precisely
the capture sequence via a static exchange evaluation. The piece values in this
chapter for (1) Pawn, (2) Knight, (3) Bishop, (4) Rook, and (5) Queen are
indicated in centipawns (CP) and have been adopted from Kaufman [32].

Multiple Threats on d-file: Loop vs. Rybka, Amsterdam 2007

rZ0s0ZkZ
Zpl0opap
pZ0Z0ZpZ
Z0Z0o0A0
0ZnZPZ0Z
Z0ORZNZ0
POQZ0OPO
Z0ZRZ0J0

Figure 4.2: Direct attacker and blocker on square d3. Indirect attackers on
square d1 and square d8.

4.1.2 Recursive Static Exchange Evaluation

”In order to understand recursion, one must first understand recursion.”

The development of recursive algorithms is mostly more intuitive, simpler, and
more time saving than the development of iterative algorithms for the same

4Indirect attackers are called x-ray attacker according to function names and comments
within the open source computer-chess engine Crafty from Hyatt.
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purpose.5 Within a computer-chess architecture the use of recursive function
calls is especially widespread in the field of sequential search algorithms. From
the currently available open source computer-chess engines, only the engine
Scorpio by Shawul, Ethiopia, is based on an iterative approach and uses no
recursive function calls for the principal variation search (PVS). Furthermore,
the well-known computer-chess machine Hydra by Donninger is based on an
iterative search technique.6

Recursive Algorithms

Apart from the search algorithms for the PVS and the quiescence search, recur-
sive brute-force performance tests are also often carried out in computer-chess
engines during the development phase and the test phase. By these perfor-
mance tests errors can quickly be traced in the basic computer-chess architec-
ture during the development phase. With the help of public computer-chess
engines, such as Crafty, this kind of performance tests can be carried out,
which determine reliable comparative values. By means of these comparative
values (→ the computed nodes) faulty deviations can be found. In a later test
phase and a later stage of the development of a computer-chess architecture
these performance tests are a good way to measure and improve, for example,
the computing speed of move generators and attack detections. The perfor-
mance measurements of move generators within a search are quite inaccurate,
since small changes in move generators mostly lead to changed game trees. The
performance measurements should then hardly be comparable.

Source Code

The source-code listing of the recursive SEE in Figure 4.3 is to be read from
White’s point of view. The initialisation algorithm

int s t a t i c ex change eva l ua t i on w ( const int from , const int to )

does not generate a call to a recursive procedure, as long as Black has not found
any defender after the generation of all direct attackers with:

void gene r a t e a t ta cke r s ( const int from , const int to )

The analysis with the return of the material value of the captured piece

int board value ( const int to )

can be terminated. As long as White moves its King and the condition

b l a ck a t ta cke r s >= 1

is fulfilled, the planned capture move would be invalid. The recursive SEE can
be terminated early. The recursion from Black’s point of view starts with the
return of the square of the last capture move:

int r e cu r s i on b ( const int from , const int to )

5lat. recurrere ”run backward”.
6For further information see the official Hydra website: http://www.hydrachess.com
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During the recursion the indirect attackers, which become activated by the
function

void upda t e x r ay a t ta cke r s ( const int next , const int to )

must be added to the available direct attackers. The recursion will be ter-
minated, if (1) one side does not have any pieces which can move onto the
destination square or (2) the King of a respective side belongs to the capture
sequence and the opposing side has at least one further direct attacker.

Recursive Static Exchange Evaluation

int s t a t i c ex change eva l ua t i on w ( const int from , const int to ) {
int value ;
// recurs ion f o r White
gene r a t e a t ta cke r s ( from , to ) ;
i f ( b l a ck a t ta cke r s ( ) == 0) return board value ( to ) ;
i f ( board p i ece ( from ) == WHITE KING) return −INFINITE ;
value = r ecu r s i on b ( from , to ) ;
return board value ( to ) − value ;

}

int r e cu r s i on b ( const int from , const int to ) {
int value ;
int next ;
// recurs ion f o r Black
next = nex t b l a ck a t ta cke r ( ) ;
upda t e x r ay a t ta cke r s ( next , to ) ;
i f ( wh i t e a t ta cke r s ( ) == 0) return board value ( from ) ;
i f ( board p i ece ( next ) == BLACK KING) return 0 ;
value = recur s i on w ( next , to ) ;
i f ( board value ( from ) − value < 0) return 0 ;
return board value ( from ) − value ;

}

int r ecur s i on w ( const int from , const int to ) {
// recurs ion f o r White
// same as f o r Black , but the func t ion c a l l s are v i c e versa

}

Figure 4.3: Source-code listing for a recursive SEE.

4.1.3 Iterative Static Exchange Evaluation

Iterative algorithms are often used for iterative deepening [22, 53] at the root of
a sequential or parallel PVS within the computer-chess engine. Iterative algo-
rithms store their local data in data structures, that are specifically organised
for that purpose, and not in the stack as it is common in recursive procedures.
These specific data structures of iterative algorithms are, unlike the stack, ac-
cessible from the outside. Although the management of these data structures
must be developed by the programmer himself, it is, nevertheless, a powerful
tool for synchronous and parallel manipulation of the data [20, 26].7

7Throughout the thesis words such as ’he’, ’she’, ’his’, ’her’, ’himself’, and ’herself’ should
be interpreted gender-neutral unless when this is obviously incorrect from the context.
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Iterative Algorithms

The time-complex behaviour and the branching factor of a computer-chess
search engine with iterative deepening at the root of a sequential PVS is highly
dependent on hash memory and heuristic procedures. Every iteration uses the
information that is retrieved from the previous iterations in order to produce
a search tree that is well sorted. Within the scope of a computer-chess search
engine, there is, in addition to the iterative deepening in the root search, also
the internal iterative deepening in the PVS, which is one of the best known
iterative search techniques [46].

The splitting of the search tree in so-called split nodes is essential for paral-
lel computer-chess search engines according to Hyatt’s Dynamic Tree Splitting
(DTS) procedures [26]. Likewise, the Young Brothers Wait (YBWC) algorithm
is most efficient if implemented iteratively [61]. Dynamic jumping is only possi-
ble with synchronised and parallel manipulation of the data within the scope of
an iterative approach. Such sophisticated parallel procedures must unlike AB-
DADA [61] or APHID [8] be developed iteratively, in order to enable a dynamic
jumping in the search tree. This is quite complicated to achieve when recursion
is involved in the search process.

Source Code

The source-code listing of the iterative SEE in Figure 4.4 is shown from White’s
point of view. The value of a pseudo move consisting of the move information

const int from

and

const int to

is to be computed in two steps with the linear vector:

int v a l u e l i s t [ 3 2 ]

Step 1: Forward-Iteration Loop

The generation of all direct attackers and the further initialisation works in
analogy to the recursive algorithm in the source-code listing of Figure 4.3 which
has been already described in Subsection 4.1.2. The value list

v a l u e l i s t [ ]

is initialised by the value of the captured piece

board value ( to )

and is described iteratively and alternately from Black’s and White’s points of
view with the difference:

va l u e a t ta cke r − v a l u e l i s t [ i t e r a t i o n −1]

When all iterations are terminated, the result of the capture sequence is entered
on the last position of the value list:
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v a l u e l i s t [ i t e r a t i o n −1]

Step 2: Reverse-Iteration Loop

The result of the capture sequence after the last iteration must be evaluated
with a further reverse iteration from the point of view of the respective side.
The result of the capture sequence after iteration (i) must be compared with
the result of the previous iteration (i − 1). The result of iteration (i − 1) will
be replaced, if the new value from iteration (i) is better for the (in each case)
active side [4, page 7-17]. The final result of the static exchange evaluation
is computed iteratively and reversely by (1) comparison, (2) negation, and (3)
copying of the material results up to the uppermost position of the value list:

v a l u e l i s t [ 0 ]

4.2 The Iterative αβ-Approach

The iterative SEE is, in contrast to the recursive implementation, more effi-
cient, since no unnecessary recursive function calls and parameter passing must
be done. The SEE algorithm computes the value of the capture sequence in
accordance with the deterministic rules and thus does not require any heuristic
procedures. The computations work with the constant branching factor = 1,
since no branches within the ”search tree” emerge (see Figure 4.1). The compu-
tations of an SEE are carried out according to the minimax theorem alternately
from White’s and Black’s point of view. Due to the skilful use of an αβ-window
for the forward-iteration loop, it is possible to dispense with the value list and
the reverse-iteration loop for the evaluation of the value list from Subsection
4.1.3. The SEE algorithm is based on hard rules, as for example a move gener-
ator or an attack detector. It is of deterministic origin and returns, in contrast
to a search algorithm or an evaluation function, exact results and no heuristic
results. Therefore, this algorithm is at the core of a state-of-the-art computer-
chess architecture.

This section contains four subsections. In Subsection 4.2.1 a short introduction
of pruning conditions for the SEE is given. In Subsections 4.2.2 to 4.2.4 we will
develop three pruning conditions which will be implemented into our iterative
αβ-based SEE.

4.2.1 Pruning Conditions

The αβ-window shrinks after the initialisation with ±∞ by alternately White
and Black, until the result of the SEE is computed. Apart from the precise
application of the minimax principle, deterministic conditions depending on the
lower bound α and the upper bound β are to be implemented, in order to
avoid unnecessary iterations. Subsequently, three conditions will be introduced,
which all in all lead to an economy of approximately 20% of all iterations and
would not be implemented efficiently and comprehensibly without the iterative
αβ-approach. With the qualitative β-pruning condition in Subsection 4.2.4 a
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Iterative Static Exchange Evaluation with a Value List

int s t a t i c ex change eva l ua t i on w ( const int from , const int to ) {
int i t e r a t i o n ;
int v a l u e l i s t [ 3 2 ] ;
int next ;
int va l u e a t ta cke r ;
// i t e r a t i o n f o r White
i t e r a t i o n =0;
v a l u e l i s t [ i t e r a t i o n ] = board value ( to ) ;
next = from ;
gene r a t e a t ta cke r s ( next , to ) ;
i f ( b l a ck a t ta cke r s ( ) == 0) return board value ( to ) ;
va l u e a t ta cke r = board value ( from ) ;
// forward−i t e r a t i on loop : (1) f i l l t he va lue l i s t
while ( true ) {

// i t e r a t i on f o r Black
i t e r a t i o n++;
v a l u e l i s t [ i t e r a t i o n ]= va lue attacker −v a l u e l i s t [ i t e r a t i o n −1] ;
next = nex t b l a ck a t ta cke r ( ) ;
upda t e x r ay a t ta cke r s ( next , to ) ;
i f ( wh i t e a t ta cke r s ( ) == 0) break ;
v a l u e a t ta cke r = board value ( next ) ;
// i t e r a t i on f o r White
i t e r a t i o n++;
v a l u e l i s t [ i t e r a t i o n ]= va lue attacker −v a l u e l i s t [ i t e r a t i o n −1] ;
next = nex t wh i t e a t ta cke r ( ) ;
upda t e x r ay a t ta cke r s ( next , to ) ;
i f ( b l a ck a t ta cke r s ( ) == 0) break ;
v a l u e a t ta cke r = board value ( next ) ;

}
// reverse−i t e r a t i on loop : (2) e va l ua t e the va lue l i s t
while ( true ) {

i f ( i t e r a t i o n == 0) return v a l u e l i s t [ 0 ] ;
i f ( v a l u e l i s t [ i t e r a t i o n ] > −v a l u e l i s t [ i t e r a t i o n −1]) {

v a l u e l i s t [ i t e r a t i o n −1] = −v a l u e l i s t [ i t e r a t i o n ] ;
}
i t e r a t i o n −−;

}
}

Figure 4.4: Source-code listing for an iterative SEE with a value list.
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further new forward-pruning condition is derived, that terminates iterations
as soon as 0 /∈ [α, . . . , β] applies for the αβ-window of the SEE. The SEE
returns quite precise results when applied in the field of move ordering compared
with techniques such as most valuable victim (MVV) and least valuable attacker
(LVA) according to Heinz [24].

4.2.2 The King-α-Pruning Condition

As already follows from the approach of the recursive SEE in Subsection 4.1.2,
a King can only participate in a capture sequence if the other side does not
have any direct attacker anymore. Otherwise the king move would be illegal,
and the end of the recursion would be reached. In the approach of the iterative
SEE with a value list discussed in Subsection 4.1.3 an illegal king move does not
automatically trigger the termination of the forward-iteration loop. Only when
the value list run through the reverse-iteration loop, the illegal king move can
be considered.

In order to avoid these unnecessary iterations, which are executed by the illegal
king move during a static exchange evaluation, an additional forward-pruning
condition is to be implemented according to the αβ-approach. In the iterative
αβ-approach lower bound α and upper bound β are always considered from
White’s point of view. This pruning procedure according to Equation 4.1 is
thus called king-α-pruning, since during the breakup of the forward-iteration
loop return value := lower bound(white) = α is returned. From Black’s
point of view the negated lower bound return value := −lower bound(black) =
−(−β) = β is returned.

The King-α-Pruning Condition

White: black attackers ≥ 1 ∧ current attacker = white king

⇒ return value := α

Black: white attackers ≥ 1 ∧ current attacker = black king

⇒ return value := β (4.1)

4.2.3 The Quantitative α-Pruning Condition

The αβ-window of the SEE decreases after the initialisation of α = −∞ and
β = board value(to) in the next iterations, until the pruning condition 4.1 or 4.2
is fulfilled or no further direct attackers are available anymore. The upper bound
β can only be lowered in the iterations of the White. The lower bound α can
only be raised in the iterations of the Black. A quantitative α-pruning condition
from White’s point of view can only be triggered, if the Black has a significant
material win in the previous iteration (i−1): valuei−1+board value(next) ≤ α.
The material win from iteration (i − 1) should not be compensated for the
recapture of the White in iteration (i). The quantitative α-pruning conditions
for White and Black are summarised in Equation 4.2 from White’s point of
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view.

The Quantitative α-Pruning Condition (Fail-Hard | Fail-Soft)

White: value ≤ α ⇒ return value := α | value

Black: value ≥ β ⇒ return value := β | value (4.2)

Fail-Hard | Fail-Soft

In fail-soft αβ-approaches within the PVS only search results α ≤ value ≤ β
are returned. In contrast, in fail-hard αβ-approaches within the PVS results
in the value range −mate + 1 ≤ value ≤ +mate − 2 are returned. These two
αβ-approaches can be applied to the iterative SEE. The distinction between
fail-hard and fail-soft is irrelevant for accuracy and efficiency of the iterative
αβ-SEE.

4.2.4 The Qualitative β-Pruning Condition

The SEE within the scope of a computer-chess architecture does not have to
compute exact results, such as material modifications. In general, qualitative
results are sufficient, so that any quantitative information about material mod-
ification by means of the SEE does not have to be considered. As long as
0 ∈ [α, . . . , β], no qualitative statements about the result of the SEE can be
made, further iterations are necessary. Since the αβ-window is becoming in-
creasingly smaller during the iterations, it is more probable that a qualitative
β-pruning condition due to 0 /∈ [α, . . . , β] is triggered. The qualitative β-pruning
conditions for White and Black as well as the modifications of the upper bound
β and the lower bound α in the iterations of White and Black from White’s
point of view are summarised in Equation 4.3.

The Qualitative β-Pruning Condition

White: value < β ⇒ β := value,

β < 0 ⇒ return value := β

Black: value > α ⇒ α := value,

α > 0 ⇒ return value := α (4.3)

Triggering a Qualitative β-Pruning Condition

In Figure 4.5 three iterations and the respective αβ-window in a horizontal
value range ] − ∞, . . . , α = vi, . . . , 0, . . . , β = vk, . . . , +∞[ are displayed. The
αβ-window shrinks after iteration 1 and 2, alternately from the right (→ upper
bound) and from the left (→ lower bound). After iteration 3, β = vk = v2.



80 CHAPTER 4. STATIC EXCHANGE EVALUATION

As the upper bound is β < 0 and consequently 0 /∈ [α, . . . , β], the qualitative
β-pruning condition is fulfilled from White’s point of view. The iteration can
be terminated after iteration 3, since there already exists a qualitative static
exchange evaluation.

Triggering a Qualitative β-Pruning Condition

White: −∞ . . . 0 . . . v0 . . . +∞

︸ ︷︷ ︸

αβ−window

Black: −∞ . . . v1 . . . 0 . . . v0 . . . +∞

︸ ︷︷ ︸

αβ−window

White: −∞ . . . v1 . . . v2 . . . 0 . . . v0 . . . +∞

︸ ︷︷ ︸

αβ−window

Figure 4.5: The αβ-window and the static exchange evaluation iterations.

4.3 The SEE Implementation8

The approach of the iterative SEE from Subsection 4.1.3 is based on a value list,
that is evaluated in a reverse iteration. Because of the use of the αβ-window
according to Section 4.2 instead of a value list, the derived pruning conditions
for White and Black, such as in Equations 4.1 to 4.3, can be implemented
directly. The forward-iteration loop is terminated immediately, as soon as one
of the pruning conditions is fulfilled or no direct attackers can move onto the
destination square anymore. The algorithm in the source-code listing of Figure
4.6 computes the material modification of a move from White’s point of view.
Since the first iteration is executed directly after the initialisation, the actual
forward-iteration loop starts with the Black. The initialisation of the lower
bound α = −∞ is done in order to perform the special case of an illegal capture
move of a king to a destination square which is defended by the opponent.

4.4 The αβ-SEE in Practice

The position of the sample board in Figure 4.7 was adopted from the Sicilian
Opening (ECO = B52) in round 11 of the game Loop Amsterdam vs. Diep

at the 15th World Computer-Chess Championship, Amsterdam (NL) 2007. By
means of this position, which emerged according to 21 Qc1b2 a6 (see Appendix
C.2), the mode of operation of the αβ-SEE can be shown quite well.

The static exchange evaluation of the capture move RXb6 should be computed
iteratively, by neglecting the fast victory for Black according to 22. . . NXb6 23

8The following algorithm was presented at the Ph.D. Day at the Maastricht University,
2007.
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Iterative SEE with αβ-Approach

int s t a t i c ex change eva l ua t i on w ( const int from , const int to ) {
int value ;
int alpha ;
int beta ;
int next ;
int va l u e a t ta cke r ;
// i t e r a t i o n f o r White
value = board value ( to ) ;
alpha = −INFINITE ;
beta = value ;
next = from ;
gene r a t e a t ta cke r s ( next , to ) ;
i f ( b l a ck a t ta cke r s ( ) == 0) return value ;
i f ( board p i ece ( from ) == WHITE KING) return alpha ;
va l u e a t ta cke r = board value ( next ) ;
// forward−i t e r a t i on loop :
// e va l ua t e the va lue from White ’ s po in t o f view
while ( true ) {

// i t e r a t i on f o r Black
value −= va l ue a t ta cke r ;
i f ( value >= beta ) return beta ;
i f ( value > alpha ) alpha = value ;
i f ( alpha > 0) return alpha ;
next = nex t b l a ck a t ta cke r ( ) ;
upda t e x r ay a t ta cke r s ( next , to ) ;
i f ( wh i t e a t ta cke r s ( ) == 0) break ;
i f ( board p i ece ( next ) == BLACK KING) return beta ;
va l u e a t ta cke r = board value ( next ) ;
// i t e r a t i on f o r White
value += va l ue a t ta cke r ;
i f ( value <= alpha ) return alpha ;
i f ( value < beta ) beta = value ;
i f ( beta < 0) return beta ;
next = nex t wh i t e a t ta cke r ( ) ;
upda t e x r ay a t ta cke r s ( next , to ) ;
i f ( b l a ck a t ta cke r s ( ) == 0) break ;
i f ( board p i ece ( next ) == WHITE KING) return alpha ;
va l u e a t ta cke r = board value ( next ) ;

}
i f ( value < alpha ) return alpha ;
i f ( value > beta ) return beta ;
return value ;

}

Figure 4.6: Source-code listing for an iterative SEE with αβ-approach.
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a5 Nd7 24 Na2 NXe4 25 NXe4 QXe4.9 Since square b6 is defended by two
black pieces and the White has moved its indirect attacker on the 21st move to
square b2, at least 3 forward iterations must be computed before the qualitative
β-pruning is triggered.

Static Exchange Evaluation for RXb6: Loop vs. Diep, Amsterdam
2007

rZrZ0Z0Z
Z0ZnZpak
poqopmpo
Z0Z0Z0Z0
PZ0OPZ0Z
ZRM0A0ZP
0LPM0OPZ
Z0Z0S0J0

Figure 4.7: Qualitative β-pruning speeds up the iterative SEE. Loop’s Rook
on square b3 threatens Diep’s Pawn on square b6.

Detailed Example

In the extracted positions in Figure 4.8 the piece constellations are shown prior
to the respective iterations. Only direct attackers, indirect attackers (x-ray at-
tackers), and the black Pawn on the destination square b6 are extracted. In
order to display the mode of operation of the αβ static exchange evaluation in
this example, all iterations have been simulated. In every iteration the develop-
ment of α, β and value is exactly split. In order to highlight precisely the right
to move in the respective iteration, the positive sign is also added. Since no
King is involved in the capture sequence, no king-α-pruning is triggered during
the iterations. All following computations are to be seen from White’s point of
view.

Initialisation and Iteration 1

In Figure 4.8 (1) the white Rook on square b3 threatens the opposing black
Pawn on square b6. The upper bound β and the current value are initialised
with the maximally expected material value(black pawn) = 100CP . Lower
bound α, that is an upper bound of Black, can only be raised in iteration 2
after the recapture of Black.

9One of the variations of this position as analysed by Loop.
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value := material value(black pawn) = +100CP

α := −∞

β := value = +100CP

Iteration 2

After the initialisation, the recapture of Black takes place in iteration 2, which
is shown in Figure 4.8 (2). The update of value occurs via the subtraction
of the material value(white rook). The quantitative α-pruning condition for
Black according to Equation 4.2 is not triggered. Qualitative-α-pruning as in
Equation 4.3 is not triggered in this iteration either:

value := value − material value(white rook) = 100CP − 500CP = −400CP

value < β = +100CP

value > α = −∞

α := value = −400CP ≤ 0

Because of the move . . . NXb6, the indirect attacker for the move QXb6 is
activated. Black does not have any indirect attackers for additional defence of
square b6.

Iteration 3

The activated indirect attacker on square b2 in Figure 4.8 (3) triggers the qual-
itative β-pruning condition in this iteration:

value := value + material value(black knight) = −400CP + 325CP = −75CP

value < β = +100CP

β := value = −75CP < 0 ⇒ Qualitative β-Pruning

Iteration 4

The board before the last iteration in Figure 4.8 (4) triggers no pruning condition
with the move . . . QXb6. The iteration is terminated, since no further direct
attackers are available concerning square b6. According to the algorithm in the
source-code listing of Figure 4.6, the forward-iteration loop is terminated and
the lower bound is returned as a final evaluation due to value < α.

value := value − material value(white queen) = −75CP − 1000CP = −1075CP

value < α = −400CP ⇒ return value = α

In Table 4.1 all 4 forward iterations, divided into qualitative and quantitative
static exchange evaluations, are summarised. The asynchronous development
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Static Exchange Evaluation: 1 RXb6 NXb6 2 QXb6 QXb6

(1) (2)

0Z0Z0Z0Z
Z0ZnZ0Z0
0oqZ0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
ZRZ0A0Z0
0L0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0ZnZ0Z0
0SqZ0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
Z0Z0A0Z0
0L0Z0Z0Z
Z0Z0Z0Z0

(3) (4)

0Z0Z0Z0Z
Z0Z0Z0Z0
0mqZ0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
Z0Z0A0Z0
0L0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0LqZ0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
Z0Z0A0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

Figure 4.8: Loop’s Rook on square b3 threatens Diep’s Pawn on square b6.
Three forward iterations have to be executed, at least.
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of the αβ-window in the forward iterations of White and Black as well as the
triggering of a break-up criterion or a pruning condition are comprehended
rather simply in this manner.

αβ-Based Static Exchange Iterations

no pruning qualitative β-pruning

iteration α value β α value β

1 −∞ +100 +100 −∞ +100 +100

2 −400 −400 +100 −400 −400 +100

3 −400 −75 −75 −400 −75 −75

4 −400 −1075 −75 n/a n/a n/a

Table 4.1: Quantitative and qualitative αβ-SEE iterations.

4.5 SEE Applications

Over the past few years, the SEE has become a central element of a state-of-
the-art computer-chess architecture. This algorithm is mainly used in the fields
of (1) move ordering, (2) search, and (3) evaluation. Subsequently, some typical
applications of the SEE in a computer-chess engine are introduced. The imple-
mentations originated from the engine Loop Amsterdam and are represented
in a simplified or abbreviated way. Without loss of generality, optimisations and
details, which are especially tuned for the playing style of Loop Amsterdam,
are left out in the source-code listings.

This section contains four subsections. In Subsections 4.5.1 to 4.5.4 we will
present four state-of-the-art applications for the SEE. Apart from the interactive
pawn evaluation in Subsection 4.5.4, all SEE applications presented below are
applied to the search engine of a computer-chess engine.

4.5.1 Selective Move Ordering

While selecting capture moves, it is possible to extract losing moves before
launching the move loop in the PVS. These weak moves must be detected re-
liably. By means of the SEE, capture moves, which could cause a loss, can be
scrutinized and evaluated. If the SEE considers many special cases and details,
such as indirect attackers, en passant, and (under-) promotions, the extracting
of capture moves will improve the move ordering significantly. Consequently,
the search process works more efficiently, since fail-highs in cut nodes [34, 41]
can be found faster and a further approximation to a critical tree or minimal
tree [24, page 16] can be gained.

Source-Code Example

In the source-code listing of Figure 4.9, weak capture moves are extracted quali-
tatively. Capture moves, which are neither a promotion nor have another smaller
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or equal material value as their captured piece

move piece captured (move )

are to be analysed additionally via the SEE. In this source-code listing the
capture move will be estimated as good, if the static exchange evaluation is
not negative (→ value ≥ 0). One of the first open-source implementations of a
qualitative move filter was published in 2005 in the project Fruit by Letouzey
[38]. This is called qualitative move filter because moves are filtered a priori
according to the evaluated boolean result (true=”good move” or false=”bad
move”).

Source-Code Example: Qualitative Capture-Move Selection

bool captur e i s good w ( const int move ) {
i f ( move captured (move ) ) {

i f ( move i s promotion (move ) ) return true ;
i f ( p i e c e va l u e ( move piece captured (move ) ) >=

pi e c e va l u e ( move piece (move ) ) ) return true ;
}
else {

i f ( s t a t i c ex change eva l ua t i on w (move ) >= 0) return true ;
}
return fa l se ;

}

Figure 4.9: Source-code listing for qualitative capture move selection with the
use of SEE.

4.5.2 Selective α-Pruning

Many different selective forward-pruning procedures have been developed up to
now. The best known techniques and procedures are null move by Donninger
[13, 14] and multi-cut αβ-Pruning by Björnsson and Marsland [6]. The major-
ity of forward-pruning procedures are based on β-pruning techniques and are
aimed at finding a probable β-cutoff as early as possible. Selective α-pruning
techniques, such as late move reductions , save the search of single subtrees and
use information from history tables [62].10 According to Romstad, late move
reductions are based on the fact that in a computer-chess PVS with state-of-
the-art move ordering, ”a beta cutoff will usually occur either at the first node,
or not at all” [47].

Source-Code Example

The source-code listing of Figure 4.10 shows the use of the SEE in a move loop
during the PVS. Prior to the static exchange evaluation of the move

const int move

10Late move reductions is the correct term for this procedure, which is also well known as
history pruning .
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further necessary conditions must be verified first. The examination of these
necessary conditions is quite simple and extracts already most of the candi-
date moves for a late move reduction (within the scope of Loop Amsterdam,
approximately 60% of these nodes were extracted). The preconditions for a
selective α-pruning can depend, according to Romstad, on various search pa-
rameters. While the SEE-condition for the selective α-pruning only validates
the qualitative SEE-value value < 0 or value ≥ 0, the preconditions can be
tuned for the playing style of a computer-chess engine (→ aggressive, offensive,
defensive) or for the special requirements of a tournament (→ opponents or time
control).

Parameter Tuning

Parameter tuning within a computer-chess engine helps to adapt the playing
style and the playing strength to special tournaments and test conditions. The
combination of different preconditions requires precise setting, testing, and tun-
ing. Subsequently, some reasonable criteria for preconditions are briefly pre-
sented. Assembling preconditions from these criteria is mostly quite difficult,
that is why only the most interesting criteria are presented here: (1) the node
type of the currently examined node according to Marsland and Popowich [41],
(2) done moves is the number of the played moves of the current move loop, (3)
depth is the distance between the transition from the PVS and the quiescence
search, (4) move, the current move should be not an irreversible move (→ cap-
ture move or pawn move), (5) check, and (6) next check, whether the friendly
King is threatened or the opposing King is threatened by the move previously
done.

Source-Code Example: Futility Filter for Selective α-Pruning

bool move i s f u t i l e w ( const node c & node , const int move ) {
i f ( node i s pv ( node ) == fa l se ) {

i f ( n od e i s i n c h e c k ( node ) == fa l se ) {
i f ( mov e i s r e v e r s i b l e (move ) == true ) {

i f ( s t a t i c ex change eva l ua t i on w (move ) < 0) return true ;
}

}
}

}

Figure 4.10: Source-code listing for selective α-pruning with static exchange
evaluation to filter futile moves.

4.5.3 Fractional Search Extensions

A selective PVS is not only based on a balanced interplay of forward-pruning
approaches and selective late move reductions [47], but also on selective search
extensions. Extensions can be split exactly in units of 1

4 , 1
12 or 1

36 plies via
fractional extensions and be controlled depending on further search parameters.
When using fractional extensions, the divider should be chosen as skilfully as
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possible. The more prime factors the divider has, the finer a ply can be split in
multiple of 1

2 , 1
3 , 1

4 , etc. By using fractional extensions, it is possible to tune the
search engine quite skilfully because the search tree is extended more precisely.

Nevertheless, too many unnecessary extensions are still triggered in practice,
which leads to the explosion of a subtree. Independent of the weighting of
a fractional extension (→ the fraction of an extension), the necessity of an
extension during the approximation to the critical tree or minimal tree [24] by
means of the SEE should be verified additionally.

Source-Code Example

In the source-code listing of Figure 4.11 it is decided on a possible pawn-push
extension.11 Provided that the piece last moved is a pushing Pawn, a pawn-
push extension will be triggered if no negative SEE-value is estimated for the
Pawn’s destination square. The negative SEE-value would result in the probable
material loss of the respective Pawn.

Source-Code Example: Pawn-Push Extension Examination

bool extend pawn push w ( const int move ) {
i f ( p i e c e i s pawn ( move piece (move ) ) ) {

i f ( i s 7 t h r ank ( move to (move ) ) ) {
i f ( s t a t i c ex change eva l ua t i on w (move ) >= 0) return true ;

}
}
return fa l se ;

}

Figure 4.11: Source-code listing for examination of pawn-push extensions with
static exchange evaluation.

4.5.4 Interactive Pawn Evaluation

Apart from the evaluation of the pawn structure, which is normally managed
in special hash tables, the interactive interplay of all pieces on the chessboard
should also be included in the evaluation of the Pawns.12 If, for example,
destination squares of moves are to be examined, the analysis of the squares of a
passed Pawn will be quite interesting in the evaluation. Unlike the other pieces,
the pawn structure is a compound, most important, and relatively inflexible
framework. Pawn moves are irreversible and thus must be scrutinized during
the interactive evaluation. A pawn structure once destroyed is hardly to be
repaired again, and will have a great influence on the game.

”Pawns are the soul of chess”, was the famous advice by Philidor in 1749.

11A pawn-push extension is, from White’s point of view, the advancement of a Pawn onto
the 6th or 7th rank.

12In contrast to the hashed pawn-structure evaluation, the dynamic interplay of all pieces
is examined in the interactive evaluation.
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4.6 Experiments with SEE Applications13

In Section 4.5, some interesting application fields of the SEE within a computer-
chess architecture were presented. The aim of the following experiment is to find
out, by means of the number of function calls of the SEE, in which application
fields the SEE is predominantly called. A manual experimental setup seems
to be more reasonable than a profile analysis (see Chapter 2). In order to
measure the number of function calls, counters are implemented in the respective
locations of the code for all applications.

As one could already presume prior to this experiment, the selective move order-
ing is among the most important application field of an SEE, as move ordering is
especially carried out in the leaves of a search tree and the quiescence search. In
Table 4.2 the results of this experiment are presented together with the counters.
The experiment was carried out using common positions from the middlegame
of a chess game. In column 2 the absolute number of the SEE-function calls
is entered. In column 3 the relative share concerning the entire amount of the
static exchange evaluations is shown. It is remarkable that the number of the
function calls within the selective fractional search extensions is small. Since
this approach of the extensions has an essential influence on the branching factor
and thus also affects the time complexity of the search, the time consumption
is to be neglected for static exchange evaluations within this application.

SEE Applications

application absolute (n) relative (%)

selective move ordering 6,807,112 63

interactive pawn evaluation 2,225,768 21

selective α-pruning 1,672,752 16

fractional search extensions 53,972 < 1

sum of applications 10,759,604 100

Table 4.2: Experimental results about SEE applications.

4.7 Experiments with Pruning Conditions

The three pruning conditions discussed in Section 4.2 can be combined in all
variations with each other. In the implementation of the source-code listing of
Figure 4.6, all three derived pruning conditions are implemented according to
Equations 4.1 to 4.3. King α-pruning works independently of the αβ-window
and can thus be used independently of the quantitative α-pruning and quali-
tative β-pruning. From here on, the king α-pruning is called Kα, quantitative
α-pruning is called QNα and qualitative β-pruning is termed QLβ.

This section contains two subsections. In Subsections 4.7.1 and 4.7.2 we will
analyse qualitative β-pruning by (1) counting the sum of iterations of combined

13The results of the following experiment were presented at the Ph.D. Day at the Maastricht
University, 2007.
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pruning conditions and (2) measuring the runtime performance of combined
pruning conditions.

4.7.1 Qualitative β-Pruning in Action

In the first experiment the pruning conditions were combined with each other in
order to find out in which iterations QLβ-pruning works most efficiently. In the
first measurement all pruning conditions were enabled (→ Kα∪QNα∪QLβ). In
the second measurement QLβ was disabled. Out of theoretical considerations,
it can be expected that QLβ can be used in iteration 3 for the first time, since
at least 2 iterations are necessary in order to shrink the αβ-window sufficiently.

The experimental results in Table 4.3 show that in iteration 3, with 22% versus
14%, significantly more prunings are triggered, which is only to be attributed
to QLβ-pruning. In columns 2 and 4 the absolute prunings are entered, i.e., in
these iterations the static exchange evaluation was terminated due to a pruning.
Therefore, it results that an evaluated summation of the prunings

sum of iterations =

8∑

iteration=1

iteration × prunings(iteration)

is equal to the number of iterations. The sum of all prunings

sum of prunings =

8∑

iteration=1

prunings(iteration)

is only a control size to verify that both measurements have produced an equal
number of prunings, though in different iterations.

Combining αβ-Pruning Conditions

Kα ∪ QNα ∪ QLβ Kα ∪ QNα

iteration absolute (n) relative (%) absolute (n) relative (%)

1 1,587,815 31 1,587,815 31

2 1,878,661 37 1,878,661 37

3 1,125,784 22 690,402 14

4 417,542 8 751,490 15

5 50,658 1 123,425 2

6 16,658 < 1 42,378 1

7 710 < 1 2,961 < 1

8 189 < 1 898 < 1

sum of prunings 5,078,017 100 5,078,017 100

sum of iterations 10,752,377 11,321,581

Table 4.3: Combining qualitative and quantitative αβ-pruning conditions.
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4.7.2 Combined Pruning Conditions

The measurement of efficiency via the runtime performance of the SEE with
combined pruning conditions is quite interesting. In Table 4.4 the results of this
two-stage measurement are summarised. In the first stage of this measurement
n = 10 SEE runs with every SEE call were processed in the computer-chess
engine Loop Amsterdam. In the second stage of this test n = 20 SEE runs
were carried out. In both measurements the runtime t1 and t2 were measured
respectively. The difference in the runtime t2 − t1 describes the required time
in milliseconds (ms) for the execution of 20 − 10 = 10 SEE runs.

If the SEE algorithm with Kα-pruning is regarded to be 100%, the relative
runtime of the different pruning combinations will be the following. The combi-
nation of all pruning approaches Kα∪QNα∪QLβ is, in contrast to the iterative
SEE with Kα-pruning, approximately 19% more efficient concerning the perfor-
mance behaviour in a computer-chess architecture.

Combining αβ-Pruning Conditions

Kα ∪ QNα ∪ QLβ Kα ∪ QLβ Kα ∪ QNα Kα

time (ms) time (ms) time (ms) time (ms)

t1 10,620 10,890 11,600 11,840

t2 15,530 16,010 17,500 17,890

t2 − t1 4,910 5,120 5,900 6,050

relative (%) 81 85 98 100

Table 4.4: Combining quantitative and qualitative αβ-pruning conditions.

4.8 Answer to Research Question 3

In this chapter we addressed the third research question. Apart from a recur-
sive implementation, the emphasis was put on the iterative approach in the
further course of this chapter. While using the αβ-window within the iterative
implementation, we were able to control directly the static exchange evalua-
tion during the computation. An iterative approach of the SEE with bounds
has been already published by Kannan in 2007 in the Winboard Forum [31].
However, the pruning conditions were not completely implemented there. We
developed pruning conditions depending on α and β, and combined them with
each other. Their respective runtimes were examined in the computer-chess en-
gine Loop Amsterdam. The use of the qualitative β-pruning condition caused
the greatest rate increase in computing speed of the SEE, with approximately
15% in the experiment described in Section 4.7.

The details of the implementation of the SEE were neglected in this chapter,
since both the Chapter 2 and Chapter 3 dealt with basic technologies for the
implementation of computer-chess architectures. The details of the implementa-
tion of the SEE are similar, to a large extent, to those of a specific move genera-
tor (generation of checks, generation of non-capturing and non-promoting checks
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(→ quite checks), or check evasions), since attacks, threats, and counter-attacks
are also considered in these algorithms.

In Table 4.5 some excerpts from a profile analysis of the computer-chess engine
Loop Amsterdam are taken. The test positions that were used represent all
stages of an average chess game. A special 32-bit executable in debug mode has
to be used for such a measurement.14 The measured distribution of computing
time of functions is only an approximate estimation.

Within the computer-chess engine Loop Amsterdam, two SEE-functions (→
see_w and see_b) for White and Black have together a time consumption of
10.4% + 3.1% = 13.5%. Therefore, the time consumption of the SEE, as mea-
sured in per cent, is only slightly smaller than the time consumption of all
evaluation functions. The entire time consumption of the evaluation during the
profile analysis is summarised in the right main column with substack.15 Here,
all function calls and sub-functions, which are above the main evaluation in the
program stack, are considered.

Furthermore, Table 4.5 lists both capture-move generators (→ gen_captures_w

and gen_captures_b) with the highest time consumption of this measurement
for the sake of comparison. In total, their share of the entire time during a game
played by Loop Amsterdam is 1.8%. This is quite small. The field of move
generation still remains the subject of intense research and development (”Move
Generation with Perfect Hash Functions”, Fenner and Levene 2008 [21], ”Not
a Power of Two: Using Bitboards for Move Generation in Shogi”, Grimbergen
2007 [23], ”Magic Move-Bitboard Generation in Computer Chess”, Kannan 2007
[30]), although there are functions within a state-of-the-art computer-chess ar-
chitecture, which have similar requirements on the computer-chess architecture
and are by far more interesting.

Profile Analysis: The Static Exchange Evaluator

without substack with substack

(net) (gross)

func name func calls time (ms) rel (%) time (ms) rel (%)

evaluate 721,993 3,438 6.8 7,796 15.5

see_b 677,255 2,451 4.9 5,231 10.4

see_w 223,268 734 1.5 1,578 3.1

gen_captures_b 202,416 482 1.0 482 1.0

gen_captures_w 165,089 381 0.8 381 0.8

Table 4.5: Profile analysis for SEEs in comparison with the evaluation function
and the most time consuming move generators.

14The measurement is carried out on a single-core computer system with 2600 MHz using
Microsoft Visual Studio 6.0, 32-bit.

15In the time measurement with substack all sub-functions are considered → gross. In the
time measurement without substack all called sub-functions are neglected → net.
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Conclusions Research Question 3

Our profile analysis in Table 4.5 gives a brief overview of the distribution of
CPU times of all functions. We admit that the αβ-SEE consumes a considerable
amount of the entire CPU time in the computer-chess engine Loop Amster-

dam. Yet, we may conclude that the successful combination of king α-pruning,
quantitative α-pruning, and qualitative β-pruning makes it possible to use the
αβ-approach within this complex algorithm extensively in a computer-chess en-
gine.

Future Research

In Section 4.5 the use of the SEE in computer-chess engines Loop Leiden,
Loop Amsterdam, and Loop Express for Nintendo Wii has been introduced.
We showed that there are only a few possible application fields of the SEE. For
future research in the application field of the SEE, it would be most interesting
to implement the SEE in (1) the move ordering of the quiescence search and
(2) the interactive evaluation. An interesting idea for the implementation of the
SEE is offered by Kannan. This idea was posted in the Winboard Forum in
2007 [31]. In his approach Kannan claims that ”a piece behind another piece is
always of a greater or equal value”.
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Chapter 5

Conclusions and Future

Research

In Section 1.3 the requirements for the development of a computer-chess ar-
chitecture were summarized. From these three requirements, (1) unlimited im-
plementation of chess knowledge, (2) higher computing speed, and (3) minimal
overhead the following problem statement has guided our research.

Problem statement: How can we develop computer-chess archi-
tectures in such a way that computer-chess engines combine the
requirements on knowledge expressiveness with a maximum of ef-
ficiency?

The problem statement was dealt with in three steps. For every step a re-
search question was formulated. We approached the research questions with
implementations and experiments, and dealt with them in an own chapter. All
implementations were tested in the environment of the computer-chess engines
Loop Leiden 2006, Loop Amsterdam 2007, and Loop Express. More-
over, they were optimised computer platform-independently. In this way, each
idea was tested and evaluated in a fully functional state-of-the-art competitive
computer-chess engine. All claims have been tested rigorously in practice.

In Section 5.1 the answers to the three research questions are summarized. In
Section 5.2 the problem statement is answered. In Section 5.3 recommendations
for future research follow, which could not be dealt within the framework of
this thesis but may contribute to the field of computer-chess architectures and
further computer-game architectures.

5.1 Conclusions on the Research Questions

In this section the answers to our three research questions stated in Section
1.3 are revised and placed in an overall context. Since every research question
was dealt with in an own chapter, the scientific results about (1) non-bitboard
computer-chess architectures (see Subsection 5.1.1), (2) magic hash functions
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for bitboards and magic multiplications (see Subsection 5.1.2), and (3) static
exchange evaluation (see Subsection 5.1.3) are provided in different subsections.

5.1.1 Non-Bitboard Architectures

A state-of-the-art computer-chess architecture must meet the requirements of
(1) competitiveness in speed, (2) simplicity, and (3) ease of implementation. We
set ourselves the task to fulfil these requirements optimally with elementary and
highly efficient techniques without using 64-bit unsigned integers. This led to
the first research question.

Research question 1: To what extent can we develop non-bitboard
computer-chess architectures, which are competitive in speed, sim-
plicity, and ease of implementation?

As we have shown, a high-performance framework could be developed and tested
in Chapter 2 due to the harmonious interplay of (1) the internal computer
chessboard (see Section 2.2), (2) the detailed piece lists (see Section 2.3), and
(3) the two blocker loops (see Section 2.5). This framework is explicitly not
based on the use of bitboards. Therefore, it can be implemented more flexibly
as the size of the board with n×m > 64 squares can be chosen almost arbitrarily.
Many chess variants [7] as for example, Gothic Chess, 10×8 Capablanca Chess,
Glinski’s Hexagonal Chess, and board games, such as computer Shogi, can use
this technology.

In a 32-bit computer system a speed improvement of approximately 32 to 40%
was measured in the environment of an advanced brute-force recursion (see Table
2.5). This is in contrast to the structurally identical computer-chess architec-
ture based on Rotated Bitboards. In a 64-bit computer environment a speed
improvement of approximately 3 to 5% was measured under the same conditions.
The performance of the New Architectures was verified in this experiment by
means of recursive brute-force performance algorithms (see source-code listings
in Appendix A.1).

This computer-chess architecture was first implemented in the quite successful
computer-chess engine Loop Leiden 2006. The computer-chess architecture
was later implemented partially in Hydra and completely in Wii Chess by
Nintendo (see Section 2.1). The high performance was just as important for
these projects as the simplicity and ease of implementation in the following two
environments: (1) the environment of a sophisticated computer-chess machine
(→ Hydra) and (2) the environment of a commercial games console with the
highest quality and security standards (→ Loop Express for Nintendo).

5.1.2 Magic Hash Functions for Bitboards

As we have shown, the use of 64-bit unsigned integers (bitboards) was quite
memory-efficient for the management of board related information. The em-
pirical results in Section 2.7 confirmed that the use of bitboards is redundant
and inefficient. The reason is that board related information for the computa-
tion of sliding movements is to be managed in parallel many times (→ Rotated
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Bitboards). For this reason, fast and simple (perfect) hash functions must be
developed. Thus, bitboards could be examined efficiently and with minimum
redundancy. This led to the second research question.

Research question 2: To what extent is it possible to use hash
functions and magic multiplications in order to examine bitboards in
computer chess?

For the development of a simple and possibly fast (perfect) hash function, only
simple arithmetic or Boolean operations can be used. In Chapter 3 we had
an additional goal: indication of (1) arbitrary n-bit unsigned integers, such
as multiple 1-bit computer words, and (2) compound bit-patterns (diagonal,
horizontal, or vertical lines) via hash functions. Only in this way it is possible
to develop (1) a challenging bit scan and (2) the movement of sliding pieces
without computing redundant rotated bitboards.

These high requirements for a hash function can only be met through multipli-
cations of the n-bit integers (input keys) by suitable multipliers, the so-called
magic multipliers. The product of this multiplication contains the unique index
to address the corresponding hash table. This operation is sufficiently fast on
a 64-bit computer environment and offers furthermore sufficient space to exam-
ine different bitboards, such as multiple 1-bit computer words and compound
bit-patterns via perfect mapping.

A complete computer-chess architecture based on hash functions and magic mul-
tiplications for the examination of bitboards is implemented in the computer-
chess engine Loop Amsterdam. This engine was able to reach the 3rd place
at the 15th World Computer-Chess Championship, Amsterdam (NL) 2007. An
essential reason for the success of this 64-bit computer-chess engine was the
use of highly sophisticated perfect hash functions and magic multipliers for the
computation of compound bit-patterns (bitboards) via perfect hashing.

5.1.3 Static Exchange Evaluation

The static exchange evaluator (SEE) is an important tool for the qualitative
and quantitative evaluation of moves and threatened squares within the scope
of a state-of-the-art computer-chess architecture. The results of this deter-
ministic approach are quite precise. The application of the SEE algorithm is
straightforward, and the field of application is enormous (e.g., move ordering,
evaluation, forward pruning, etc.). However, the pruning conditions can only be
implemented into the SEE with an iterative αβ-approach. Then the procedure
becomes clearly more efficient. The third research question resulted from this
observation.

Research question 3: How can we develop an αβ-approach in
order to implement pruning conditions in the domain of static ex-
change evaluation?

It is hardly possible to prune a priori unnecessary capture-move sequences with
a recursive algorithm or an iterative algorithm using a value list during the
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static exchange evaluation. In Section 4.2 the iterative αβ-approach was intro-
duced. Based on this approach, we developed three pruning conditions: (1) the
King-α-pruning condition, (2) the quantitative α-pruning condition, and (3) the
qualitative β-pruning condition.

Due to the further development of the iterative SEE as given in Section 4.1
and the implementation of the αβ-window, we could dispense with an addi-
tional value list. Since the evaluation of the value list via reverse iteration is
unnecessary, the new algorithm is more compact and even more efficient with-
out pruning conditions (Kα, QNα, and QLβ). The implementation of the three
pruning conditions in the iterative αβ-SEE proceeded without any difficulties.

Due to the combination of the quantitative α-pruning condition and the qualita-
tive β-pruning condition, a performance increase of approximately 19% could be
gained within the computer-chess engine Loop Amsterdam in the experiment
in Section 4.7. From these results the new qualitative β-pruning condition has
gained the highest pruning performance. However, we admit that the highly
sophisticated SEE consumes with approximately 13% (see Table 4.5) clearly
more CPU time than the most frequently used move generators (approximately
2%). The iterative αβ-based SEE is the most interesting deterministic algo-
rithm within the 64-bit computer-chess architecture of Loop Amsterdam and
the 32-bit computer-chess architecture of Loop Express.

5.2 Conclusions on the Problem Statement

In Section 1.3 we formulated the following problem statement.

Problem statement: How can we develop new computer-chess ar-
chitectures in such a way that computer-chess engines combine the
requirements on knowledge expressiveness with a maximum of effi-
ciency?

The computer-chess architectures and algorithms, that were developed and
tested in this thesis, were successful in international computer-chess cham-
pionships (see Appendix C). The implementation of complex chess knowl-
edge with a maximum of efficiency has succeeded within the framework of
the computer-chess architectures on 32-bit and 64-bit computer environments.
Careful tuning and extensive testing were necessary to achieve a high level of
performance.1

32-Bit and 64-Bit Computer Environments

The computer-chess architecture introduced in Chapter 2 is efficient on 32-
bit and 64-bit computer environments. The implementation of complex chess
knowledge within the computer-chess engine Loop Leiden was successful. Dur-
ing the 26th Open Dutch Computer-Chess Championship (see Appendix C.1)
Loop Leiden played with a performance of 1.8× 106 to 3.1× 106 nodes

seconds×cores
.

1Every algorithm and technology presented within this thesis were tested by independent
β-testers more than 10,000 hours on different computer environments.
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64-Bit Computer Environments

The use of hash functions and magic multiplications introduced in Chapter
3 is only competitive in speed on 64-bit computer environments. The imple-
mentation of complex chess knowledge within the computer-chess engine Loop

Amsterdam was successful. During the 15th World Computer-Chess Champi-
onship (see Appendix C.2) Loop Amsterdam played with a performance of
2.1 × 106 to 3.5 × 106 nodes

seconds×cores
.

5.3 Recommendations for Future Research

In this section three of the most interesting recommendations for future research
are listed.

1. Board games with n × m > 64 squares. The technologies and ap-
proaches which were developed in Chapter 2 can, in contrast to bitboards,
also be applied to board games with n × m squares (n × m > 64). An
analysis of the performance of a 9 × 9 computer-Shogi architecture based
on the New Architectures discussed in Chapter 2 in comparison with bit-
boards [23] would be quite interesting. Such an experiment would provide
valuable findings, to what extent competitiveness in speed, simplicity, and
ease of implementation of the New Architectures can be achieved in other
board games.

2. Magic hash functions. A perfect hash function with magic multiplica-
tions for the examination of bitboards is a high-performance technology
for computer-chess architectures. In order to be able to improve our un-
derstanding of the magic multiplication, it is necessary to gain a deeper
understanding of multiplications of unsigned integers with overflow in
mathematical rings (see Section 3.9). The research of bit patterns and
the experiments with magic multiplier sets with n ≤ 6 bits at the end
of Section 3.8 was a first step in order to improve the understanding of
this complex process. The reduction of the size of sub-hash tables for the
examination of compound bit patterns to around 1 to 2 bits should be
possible (see Section 3.9).

3. Branching factor. The precise results of a static exchange evaluation
can be used for the reduction of the branching factor of a computer-
chess search engine. Three of the four introduced applications of the SEE
discussed in Section 4.5 were implemented in the computer-chess engine
Loop Amsterdam to reduce the branching factor. It should be possible
to improve the game performance with further and more skilful applica-
tions of the SEE within a sophisticated game-tree search and quiescence
search through reduction of the branching factor.

Finally, in Tables 5.1 and 5.2 the branching factors of some highly so-
phisticated computer-chess engines from 2006 are listed. The branching
factors are computed as a quotient of the entire time after searching a new
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ply and the entire time after searching the previous ply.2

branching factor =
time(current ply)

time(previous ply)

The results of the quotient in Table 5.1 apply to the computer-chess en-
gines tested in opening positions. In analogy, the results of the quotient
in Table 5.2 apply to the computer-chess engines tested in middlegame
positions. Both tables are arranged according to the average branching
factor in ascending order in the last column. These results of measurement
confirm our assumption, that stronger computer-chess engines and even
stronger sub-versions of computer-chess engines (Rybka 1.1 → Rybka

1.2f) have a smaller branching factor.

Branching Factors of Computer-Chess Engines

branching factors (plies)

chess engine 12 13 14 15 16 17 18 average

Rybka 1.2f 1.8 1.6 2.2 2.2 2.1 n/a n/a 1.96

Rybka 1.1 1.8 1.9 2.0 2.2 2.7 n/a n/a 2.09

Shredder 10 UCI 2.0 3.1 1.9 2.3 1.7 n/a n/a 2.15

Loop 2006 2.2 2.0 2.7 2.2 2.9 n/a n/a 2.37

Hiarcs x50 UCI 1.9 2.6 2.7 2.8 n/a n/a n/a 2.47

Table 5.1: Branching factors of computer-chess engines in opening positions.

Branching Factors of Computer-Chess Engines

branching factors (plies)

chess engine 12 13 14 15 16 17 18 average

Rybka 1.2f 1.7 1.7 1.6 2.3 1.8 1.8 1.9 1.81

Rybka 1.1 2.0 1.8 1.8 2.3 2.0 2.0 1.9 1.96

Loop 2006 n/a 2.3 1.8 2.0 2.1 2.1 2.2 2.07

Shredder 10 UCI n/a 1.9 1.9 2.3 2.0 2.9 2.6 2.23

Hiarcs x50 UCI n/a 2.3 2.4 2.5 2.6 2.2 n/a 2.39

Table 5.2: Branching factors of computer-chess engines in middlegame positions.

2The results are derived from the experiment carried out by Gerhard Sonnabend, the main
β-tester for all Loop-engines since 2005.
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Appendix A

Source-Code Listings

This appendix contains two sections. In Section A.1 C/C++ source codes ac-
cording to the brute-force performance experiments in Section 2.7 are given.
In Section A.2 additional C/C++ source codes according to the trial-and-error
algorithm in Section 3.7 are given for completeness.

A.1 Recursive Brute-Force Performance Algo-

rithms

Below two recursive brute-force algorithms

uint64 ba s i c r e c u r s i o n (board c & board , const int depth ) ;
uint64 advanced r ecur s i on (board c & board , const int depth ) ;

are listed. These algorithms were used for an experiment in Section 2.7. The
reference to a board object is passed via the parameter:

board c & board

The class

board c

contains the information about the current chessboard (e.g. castle status, en
passant square, etc.). The maximal recursion depth of both algorithms is con-
trolled by the passed parameter:

const int depth

The additional identifier

undo c undo

is needed in order to save information about the (1) en passant square, the (2)
fifty move rule, and (3) for restoring hash keys. The only difference between
these two algorithms is the order of doing/undoing moves. The generated moves
in the first algorithm are done/undone sequentially. In the second algorithm the
moves are ordered according to heuristic rules before they are done/undone. The
class
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sort c

and the two function calls

void s o r t i n i t i a l i z e (board c & board , sort c & sor t , int check ) ;
int sort move (board c & board , sort c & sor t ) ;

initialise and manage the move ordering and move selection.

Basic Brute-Force Recursion

uint64 b a s i c r e c u r s i o n (board c & board , const int depth ) {
uint64 nodes ;
int moves ;
int move l i s t [ 2 5 6 ] ;
undo c undo ;

nodes =0;
moves=generate moves ( board , move l i s t ) ;

for ( int i =0; i < moves ; i++) {
int move=move l i s t [ i ] ;
do move ( board , undo , move ) ;
i f ( ! i s k i n g a t t a c k ed ( board ) ) {

i f ( depth > 1)
nodes+=ba s i c r e c u r s i o n ( board , depth−1) ;

else

nodes++;
}
undo move ( board , undo , move ) ;

}
return nodes ;

}

Advanced Brute-Force Recursion

uint64 advanced r ecur s i on (board c & board , const int depth ) {
uint64 nodes ;
int move ;
int check ;
sort c s o r t ;
undo c undo ;

nodes =0;
check=i s k i n g a t t a c k ed ( board ) ;
s o r t i n i t i a l i z e ( board , sor t , check ) ;

while ( (move=sort move ( board , s o r t ) ) != MOVENONE) {
do move ( board , undo , move ) ;
i f ( depth > 1)

nodes+=advanced r ecur s i on ( board , depth−1) ;
else

nodes++;
undo move ( board , undo , move ) ;

}
return nodes ;

}
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A.2 Generation of Masks and Attacks

Below all additional source-codes listings for the generation of file masks and
rank masks

uint64 generate a1a8 mask ( int square ) ;
uint64 generate a1h1 mask ( int square ) ;

as well as diagonal masks

uint64 generate a1h8 mask ( int square ) ;
uint64 generate h1a8 mask ( int square ) ;

are given. Furthermore, all additional source-codes listings for the generation
of file attacks and rank attacks

uint64 gene r a t e a1a8 a t ta ck ( int square , uint64 b l o cke r s ) ;
uint64 generate a1h1 attack ( int square , uint64 b l o cke r s ) ;

as well as diagonal attacks

uint64 generate a1h8 attack ( int square , uint64 b l o cke r s ) ;
uint64 generate h1a8 attack ( int square , uint64 b l o cke r s ) ;

are given. For the generation of masks we need only to pass the parameter:

int square

For the generation of attacks the further parameter

uint64 b l o cke r s

is required in order to generate the corresponding attack mask for a given bit-
board of blockers.

Generation of File Masks

uint64 generate a1a8 mask ( int square ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int r ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( r = rank + 1 ; r <= 6 ; r++)
bitboard |= f i l e r a n k t o b i t b o a r d ( f i l e , r ) ;

for ( r = rank − 1 ; r >= 1 ; r−−)
bi tboard |= f i l e r a n k t o b i t b o a r d ( f i l e , r ) ;

return bitboard ;
}
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Generation of Rank Masks

uint64 generate a1h1 mask ( int square ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int f ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( f = f i l e + 1 ; f <= 6 ; f++)
bitboard |= f i l e r a n k t o b i t b o a r d ( f , rank ) ;

for ( f = f i l e − 1 ; f >= 1 ; f−−)
bi tboard |= f i l e r a n k t o b i t b o a r d ( f , rank ) ;

return bitboard ;
}

Generation of Diagonal Masks

uint64 generate a1h8 mask ( int square ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int f ;
int r ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( r = rank + 1 , f = f i l e + 1 ; r <= 6 && f <= 6 ; r++, f++)
bitboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;

for ( r = rank − 1 , f = f i l e − 1 ; r >= 1 && f >= 1 ; r−−, f−−)
bi tboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;

return bitboard ;
}

uint64 generate h1a8 mask ( int square ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int f ;
int r ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( r = rank + 1 , f = f i l e − 1 ; r <= 6 && f >= 1 ; r++, f−−)
bi tboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;

for ( r = rank − 1 , f = f i l e + 1 ; r >= 1 && f <= 6 ; r−−, f++)
bitboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;

return bitboard ;
}
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Generation of Bishop and Rook Masks

uint64 generate bi shop mask ( int square ) {
return generate a1h8 mask ( square ) |

generate h1a8 mask ( square ) ;
}

uint64 generate rook mask ( int square ) {
return generate a1a8 mask ( square ) |

generate a1h1 mask ( square ) ;
}

Generation of File Attacks

uint64 gene r a t e a1a8 a t ta ck ( int square , uint64 b l o cke r s ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int r ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( r = rank + 1 ; r <= 7 ; r++) {
bitboard |= f i l e r a n k t o b i t b o a r d ( f i l e , r ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f i l e , r ) ) break ;

}
for ( r = rank − 1 ; r >= 0 ; r−−) {

bitboard |= f i l e r a n k t o b i t b o a r d ( f i l e , r ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f i l e , r ) ) break ;

}
return bitboard ;

}

Generation of Rank Attacks

uint64 generate a1h1 attack ( int square , uint64 b l o cke r s ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int f ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( f = f i l e + 1 ; f <= 7 ; f++) {
bitboard |= f i l e r a n k t o b i t b o a r d ( f , rank ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f , rank ) ) break ;

}
for ( f = f i l e − 1 ; f >= 0 ; f−−) {

bitboard |= f i l e r a n k t o b i t b o a r d ( f , rank ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f , rank ) ) break ;

}
return bitboard ;

}



112 APPENDIX A. SOURCE-CODE LISTINGS

Generation of Diagonal Attacks

uint64 generate a1h8 attack ( int square , uint64 b l o cke r s ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int f ;
int r ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( r = rank + 1 , f = f i l e + 1 ; r <= 7 && f <= 7 ; r++, f++) {
bitboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f , r ) ) break ;

}
for ( r = rank − 1 , f = f i l e − 1 ; r >= 0 && f >= 0 ; r−−, f−−) {

bitboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f , r ) ) break ;

}
return bitboard ;

}

uint64 generate h1a8 attack ( int square , uint64 b l o cke r s ) {
uint64 bitboard ;
int f i l e ;
int rank ;
int f ;
int r ;

b i tboard = 0 ;

f i l e = s q u a r e f i l e [ square ] ;
rank = square rank [ square ] ;

for ( r = rank + 1 , f = f i l e − 1 ; r <= 7 && f >= 0 ; r++, f−−) {
bitboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f , r ) ) break ;

}
for ( r = rank − 1 , f = f i l e + 1 ; r >= 0 && f <= 7 ; r−−, f++) {

bitboard |= f i l e r a n k t o b i t b o a r d ( f , r ) ;
i f ( b l o cke r s & f i l e r a n k t o b i t b o a r d ( f , r ) ) break ;

}
return bitboard ;

}

Generation of Bishop and Rook Attacks

uint64 gene r a t e b i s hop a t ta ck ( int square , uint64 b l o cke r s ) {
return generate a1h8 attack ( square , b l o cke r s ) |

generate h1a8 attack ( square , b l o cke r s ) ;
}

uint64 gene r a t e r ook a t ta ck ( int square , uint64 b l o cke r s ) {
return gene r a t e a1a8 a t ta ck ( square , b l o cke r s ) |

generate a1h1 attack ( square , b l o cke r s ) ;
}



Appendix B

Magic Multipliers

In this appendix the magic multiplier sets according to the experiments in Sec-
tion 3.8 for Bishops and Rooks are given in C/C++ code. Furthermore, the
magic multipliers sets are given in hexadecimal notation partitioned into eight
blocks for every rank (→ rank1, . . ., rank8).

This appendix contains two sections. In Section B.1 the magic multipliers for
Bishops are listed. In Section B.2 the magic multipliers for Rooks are listed.

B.1 Magic Multipliers for Bishops

Below the magic multiplier set with minimal n bits for Bishops is summarised.
The appropriate square (→ a1, . . ., h8) is given as a vector index. According to
the results in Table 3.18, the number of active bits is added as C/C++ comment.

uint64 mag i c mu l t i p l i e r b i s hop [ 6 4 ] ;

mag i c mu l t i p l i e r b i s hop [ a1 ]=0x0040100401004010 ; // 6 b i t s
mag i c mu l t i p l i e r b i s hop [ b1 ]=0x0020080200802000 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c1 ]=0x0010040080200000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ d1 ]=0x0004040080000000 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ e1 ]=0x0002021000000000 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ f 1 ]=0x0002080404000000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ g1 ]=0x0004040404040000 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h1 ]=0x0002020202020200 ; // 6 b i t s

mag i c mu l t i p l i e r b i s hop [ a2 ]=0x0000401004010040 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ b2 ]=0x0000200802008020 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c2 ]=0x0000100400802000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ d2 ]=0x0000040400800000 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ e2 ]=0x0000020210000000 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ f 2 ]=0x0000020804040000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ g2 ]=0x0000040404040400 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h2 ]=0x0000020202020200 ; // 5 b i t s

mag i c mu l t i p l i e r b i s hop [ a3 ]=0x0040002008020080 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ b3 ]=0x0020001004010040 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c3 ]=0x0010000800802008 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ d3 ]=0x0008000082004000 ; // 4 b i t s
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mag i c mu l t i p l i e r b i s hop [ e3 ]=0x0001000820080000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ f 3 ]=0x0002000101010100 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ g3 ]=0x0004000202020200 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h3 ]=0x0002000101010100 ; // 5 b i t s

mag i c mu l t i p l i e r b i s hop [ a4 ]=0x0020200010040100 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ b4 ]=0x0010100008020080 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c4 ]=0x0008080004004010 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ d4 ]=0x0002008008008002 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ e4 ]=0x0000840000802000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ f 4 ]=0x0010010000808080 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ g4 ]=0x0008020001010100 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h4 ]=0x0004010000808080 ; // 5 b i t s

mag i c mu l t i p l i e r b i s hop [ a5 ]=0x0010101000080200 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ b5 ]=0x0008080800040100 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c5 ]=0x0004040400020020 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ d5 ]=0x0000020080080080 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ e5 ]=0x0010020080001004 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ f 5 ]=0x0020080080004040 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ g5 ]=0x0010040100008080 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h5 ]=0x0008020080004040 ; // 5 b i t s

mag i c mu l t i p l i e r b i s hop [ a6 ]=0x0008080808000400 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ b6 ]=0x0004040404000200 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c6 ]=0x0002020202000100 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ d6 ]=0x0000004208000080 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ e6 ]=0x0000080104000040 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ f 6 ]=0x0040100400400020 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ g6 ]=0x0020080200800040 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h6 ]=0x0010040100400020 ; // 5 b i t s

mag i c mu l t i p l i e r b i s hop [ a7 ]=0x0004040404040000 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ b7 ]=0x0002020202020000 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c7 ]=0x0000020201040000 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ d7 ]=0x0000000042020000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ e7 ]=0x0000001002020000 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ f 7 ]=0x0000401002008000 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ g7 ]=0x0040100401004000 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ h7 ]=0x0020080200802000 ; // 5 b i t s

mag i c mu l t i p l i e r b i s hop [ a8 ]=0x0002020202020200 ; // 6 b i t s
mag i c mu l t i p l i e r b i s hop [ b8 ]=0x0000020202020200 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ c8 ]=0x0000000202010400 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ d8 ]=0x0000000000420200 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ e8 ]=0x0000000010020200 ; // 3 b i t s
mag i c mu l t i p l i e r b i s hop [ f 8 ]=0x0000004010020080 ; // 4 b i t s
mag i c mu l t i p l i e r b i s hop [ g8 ]=0x0000401004010040 ; // 5 b i t s
mag i c mu l t i p l i e r b i s hop [ h8 ]=0x0040100401004010 ; // 6 b i t s

B.2 Magic Multipliers for Rooks

Below the magic multiplier set with minimal n bits for Rooks is summarised.
The appropriate square (→ a1, . . ., h8) is given as a vector index. According to
the results in Table 3.19, the number of active bits is added as C/C++ comment.

uint64 mag i c mu l t i p l i e r r ook [ 6 4 ] ;
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mag i c mu l t i p l i e r r ook [ a1 ]=0x0080004000802010 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ b1 ]=0x0040002000100040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c1 ]=0x0080200010008008 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ d1 ]=0x0080100008008004 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ e1 ]=0x0080080004008002 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ f 1 ]=0x0080040002008001 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ g1 ]=0x0080020001000080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h1 ]=0x0080010000402080 ; // 5 b i t s

mag i c mu l t i p l i e r r ook [ a2 ]=0x0000800040008020 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ b2 ]=0x0000400020100040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c2 ]=0x0000802000100080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ d2 ]=0x0000801000080080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ e2 ]=0x0000800800040080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ f 2 ]=0x0000800400020080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ g2 ]=0x0001000200010004 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h2 ]=0x0000800100004080 ; // 4 b i t s

mag i c mu l t i p l i e r r ook [ a3 ]=0x0000808000400020 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ b3 ]=0x0010004000200040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c3 ]=0x0000808020001000 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ d3 ]=0x0000808010000800 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ e3 ]=0x0000808008000400 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ f 3 ]=0x0000808004000200 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ g3 ]=0x0000010100020004 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h3 ]=0x0000020004008041 ; // 5 b i t s

mag i c mu l t i p l i e r r ook [ a4 ]=0x0000400080008020 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ b4 ]=0x0000200040100040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c4 ]=0x0000200080100080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ d4 ]=0x0000100080080080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ e4 ]=0x0000080080040080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ f 4 ]=0x0000040080020080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ g4 ]=0x0001000100020004 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h4 ]=0x0000800080004100 ; // 4 b i t s

mag i c mu l t i p l i e r r ook [ a5 ]=0x0000400080800020 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ b5 ]=0x0000201000400040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c5 ]=0x0000200080801000 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ d5 ]=0x0000100080800800 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ e5 ]=0x0000080080800400 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ f 5 ]=0x0000040080800200 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ g5 ]=0x0000020001010004 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h5 ]=0x0000800040800100 ; // 4 b i t s

mag i c mu l t i p l i e r r ook [ a6 ]=0x0000800040008020 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ b6 ]=0x0000400020008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c6 ]=0x0000200010008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ d6 ]=0x0000100008008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ e6 ]=0x0000080004008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ f 6 ]=0x0000040002008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ g6 ]=0x0001000200010004 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h6 ]=0x0000040080420001 ; // 5 b i t s

mag i c mu l t i p l i e r r ook [ a7 ]=0x0080004000200040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ b7 ]=0x0000400020100040 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ c7 ]=0x0000200010008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ d7 ]=0x0000100008008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ e7 ]=0x0000080004008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ f 7 ]=0x0000040002008080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ g7 ]=0x0000800200010080 ; // 4 b i t s
mag i c mu l t i p l i e r r ook [ h7 ]=0x0000800100004080 ; // 4 b i t s
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mag i c mu l t i p l i e r r ook [ a8 ]=0 x0000800100402011 ; // 6 b i t s
mag i c mu l t i p l i e r r ook [ b8]=0 x0000400100802011 ; // 6 b i t s
mag i c mu l t i p l i e r r ook [ c8 ]=0 x0000200100401009 ; // 6 b i t s
mag i c mu l t i p l i e r r ook [ d8]=0 x0000100100200805 ; // 6 b i t s
mag i c mu l t i p l i e r r ook [ e8 ]=0 x0001000800100403 ; // 6 b i t s
mag i c mu l t i p l i e r r ook [ f 8 ]=0 x0001000400080201 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ g8 ]=0 x0001000200040081 ; // 5 b i t s
mag i c mu l t i p l i e r r ook [ h8]=0 x0001000200804021 ; // 6 b i t s



Appendix C

Loop at Computer-Chess

Tournaments

In this appendix the most important computer-chess tournaments where Loop

participated between 2005 and 2008 are summarized. Additionally, in the games
headings the opening variation, such as Sicilian Najdorf or Queen’s Gambit, and
their respective ECO codes are given. In the end of every game the final position
is given. All analyses were carried out with the computer-chess engine Loop.

This appendix contains two sections. In Section C.1 the game data from the 26th

Open Dutch Computer-Chess Championship, Leiden (NL) 2006 are given. In
Section C.2 the game data from the 15th World Computer-Chess Championship
2007, Amsterdam (NL) are given.

C.1 26
th Open Dutch Computer-Chess Champi-

onship

The 26th Open Dutch Computer-Chess Championship was held from 3rd to 5th

of November 2006, in the Denksportcentrum Leiden. The playing tempo was 90
minutes per computer-chess engine. Clemens Keck was the operator of Loop

Leiden and the book designer. Loop Leiden was installed on a dual-core Intel
Conroe at 2 × 3000 MHz.

In Table C.1 the time schedule and the results of Loop Leiden are given.
In Table C.2 the tournament results of the 26th Open Dutch Computer-Chess
Championship are summarized. Further information about this tournament and
the final contingency table can be found at the CSVN website [57]. All games
played by Loop Leiden in 9 rounds are chronologically listed below.
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Time Schedule and the Results of Loop

Round Day White Black Result

1 Friday Rybka Loop Leiden 1-0

2 Friday Loop Leiden ZZZZZZ 1-0

3 Friday Loop Leiden Deep Shredder 1-0

4 Saturday The Baron Loop Leiden 0-1

5 Saturday Loop Leiden Hiarcs X MP 0.5-0.5

6 Saturday Fruit Loop Leiden 0.5-0.5

7 Sunday The King Loop Leiden 0-1

8 Sunday Loop Leiden Deep Gandalf 1-0

9 Sunday IsiChess MMX Loop Leiden 0-1

Table C.1: Time schedule and the results of Loop at the 26th Open Dutch
Computer-Chess Championship 2006, Leiden (NL).

Tournament Result

Rank Program Country Games Score

1 Rybka Hungary 9 9.0

2 Loop Leiden Germany 9 7.0

3 Hiarcs X MP UK 9 6.5

4 Fruit France 9 6.0

5 Deep Gandalf Denmark 9 5.0

6 Deep Sjeng Belgium 8 5.0

7 The Baron Netherlands 8 5.0

8 The King Netherlands 9 4.5

9 Deep Shredder Germany 8 4.5

10 IsiChess MMX Germany 8 4.5

11 XiniX Netherlands 8 4.5

12 ANT Netherlands 8 4.0

13 Hermann Germany 8 3.5

14 Zzzzzz Netherlands 8 2.0

15 Joker Netherlands 8 1.0

Table C.2: Tournament result of the 26th Open Dutch Computer-Chess Cham-
pionship 2006, Leiden (NL).
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Round 1: Rybka - Loop Leiden, Sicilian Najdorf (B90): Unusual White
6th moves, 6 Be3 Ng4 and 6 Be3 e5

1 e4 c5 2 Nf3 d6 3 d4 cXd4 4 NXd4 Nf6 5 Nc3 a6 6 Be3 e5 7 Nb3
Be7 8 f3 Be6 9 Qd2 O-O 10 O-O-O Nbd7 11 g4 b5 12 g5 b4 13 Ne2
Ne8 14 f4 a5 15 f5 a4 16 Nbd4 eXd4 17 NXd4 b3 18 Kb1 bXc2+ 19
NXc2 Bb3 20 aXb3 aXb3 21 Na3 Ne5 22 Qg2 Qb8 23 f6 Bd8 24 Rd5
Ra5 25 Be2 RXd5 26 eXd5 Bb6 27 Bf4 Bc5 28 fXg7 KXg7 29 Qg3 Qa8
30 QXb3 BXa3 31 BXe5+ dXe5 32 QXa3 QXa3 33 bXa3 Nd6 34 Rc1
Rd8 35 a4 Ne4 36 Bb5 RXd5 37 Bc6 Nd2+ 38 Kb2 Rd4 39 Kc3 Nc4
40 Kb4 Nd2+ 41 Kb5 Rd8 42 a5 Nb3 43 Rc4 Rb8+ 44 Ka4 Nd4 45
Bd5 Rb1 46 Rc3 f5 47 gXf6+ KXf6 48 a6 Rb6 49 Bc4 Rb8 50 Rh3 h5
51 RXh5 e4 52 Rd5 Nf5 53 Ka5 e3 54 Rd1 Ne7 55 Rd6+ Kf5 56 Re6 Nc8

Final position: Loop Leiden resigns → 1-0

0snZ0Z0Z
Z0Z0Z0Z0
PZ0ZRZ0Z
J0Z0ZkZ0
0ZBZ0Z0Z
Z0Z0o0Z0
0Z0Z0Z0O
Z0Z0Z0Z0

Round 2: Loop Leiden - ZZZZZZ

1 d4 Nf6 2 c4 g6 3 g3 d5 4 cXd5 QXd5 5 Nf3 Bg7 6 Nc3 Qa5 7 Bd2
Qb6 8 e4 c6 9 Be2 Bg4 10 Na4 Qd8 11 e5 Ne4 12 O-O b5 13 Nc3
NXd2 14 QXd2 O-O 15 Rfd1 f6 16 eXf6 eXf6 17 d5 b4 18 Na4 Qa5
19 a3 QXa4 20 aXb4 Qb3 21 Nd4 QXd5 22 BXg4 f5 23 Bf3 QXd4 24
QXd4 BXd4 25 RXd4 a5 26 b5 c5 27 Rc4 Ra7 28 b6 Ra6 29 b7 f4 30
g4 Rb6 31 RXc5 RXb2 32 Bd5+ Kg7 33 RaXa5 Rd8

Final position: ZZZZZZ resigns → 1-0

0m0s0Z0Z
ZPZ0Z0jp
0Z0Z0ZpZ
S0SBZ0Z0
0Z0Z0oPZ
Z0Z0Z0Z0
0s0Z0O0O
Z0Z0Z0J0
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Round 3: Loop Leiden - Deep Shredder, Larsen Opening (A01)

1 b3 e5 2 Nc3 d5 3 d4 Bb4 4 Bb2 Nf6 5 a3 eXd4 6 aXb4 dXc3 7 BXc3
O-O 8 e3 Ne4 9 Bb2 Qh4 10 g3 Qe7 11 Qd4 Nf6 12 b5 Re8 13 Bd3
c5 14 Qh4 Nbd7 15 Nf3 c4 16 BXf6 NXf6 17 bXc4 dXc4 18 QXc4 Bh3
19 Ke2 Bg4 20 h3 Bh5 21 Rhd1 Bg6 22 BXg6 hXg6 23 Rd4 Ne4 24
Kf1 Rac8 25 Qb3 Rc5 26 Nd2 Nc3 27 RXa7 Rec8 28 Rd3 Qc7 29 e4
NXb5 30 Ra4 Qe7 31 h4 g5 32 hXg5 QXg5 33 Rc4 RXc4 34 NXc4 Qc5
35 Ne3 Qc6 36 Qb4 Re8 37 f3 Ra8 38 Kg2 g6 39 Rb3 Nd6 40 Rc3
Qa6 41 Rd3 Ne8 42 Kf2 Rc8 43 Rd7 b5 44 Ke2 Qe6 45 QXb5 Nd6
46 Qa4 Kh7 47 Qa7 Kg8 48 Kf2 Qf6 49 Kg2 Kg7 50 Ng4 RXc2+ 51
Kh3 QXf3 52 Qd4+ Kh7 53 Nf6+ Kh6 54 RXd6 Qg2+ 55 Kg4 Qe2+

56 Kf4 Qf1+ 57 Ke5 Qb5+ 58 Nd5 Rc4 59 Qd2+ Kg7 60 Qe2 Qc5
61 Rd7 Qd4+ 62 Kf4 Rc1 63 Rb7 Rc5 64 Rb4 Qa1 65 Qb2+ QXb2 66
RXb2 Rc1 67 Rb7 Rc4 68 Nc7 Rc6 69 e5 Kh6 70 Ne8 Rc4+ 71 Ke3
Rc5 72 Kd4 Ra5 73 RXf7 Ra4+ 74 Kd5

Final position: Deep Shredder resigns → 1-0

0Z0ZNZ0Z
Z0Z0ZRZ0
0Z0Z0Zpj
Z0ZKO0Z0
rZ0Z0Z0Z
Z0Z0Z0O0
0Z0Z0Z0Z
Z0Z0Z0Z0

Round 4: The Baron - Loop Leiden, Nimzowitsch-Larsen Opening (A01)

1 d4 Nf6 2 Nf3 e6 3 Bf4 d5 4 e3 c5 5 c3 Nc6 6 Nbd2 Bd6 7 Bg3 O-O
8 Bd3 Qe7 9 Ne5 Nd7 10 f4 f5 11 O-O Qd8 12 Ndf3 NdXe5 13 fXe5
Be7 14 a3 c4 15 Be2 Bd7 16 Bf4 Na5 17 Qe1 Kh8 18 Qg3 h6 19 Qf2
Qb6 20 Bd1 g5 21 Bg3 Rg8 22 Qc2 h5 23 Nd2 h4 24 Bf2 g4 25 g3
hXg3 26 BXg3 Bg5 27 Bf4 BXf4 28 eXf4 Qd8 29 Rf2 g3 30 hXg3 RXg3+

31 Kf1 Qh4 32 Bf3 Rag8 33 Ke2 Rh3 34 Raf1 QXf4 35 Qd1 Qh6 36
Rh1 Rgg3 37 RXh3 RXh3 38 Rg2 Bb5 39 a4 Rh1 40 Rg8+ KXg8 41
QXh1 QXh1 42 BXh1 BXa4 43 Nf3 Be8 44 Ng5 Bf7 45 Ke3 Nc6 46
Nh3 Kg7 47 Nf4 Kh6 48 Bf3 Ne7 49 Bd1 b5 50 Nh3 a5 51 Kd2 b4 52
Ba4 bXc3+ 53 bXc3 Kh5 54 Ng1 f4 55 Ke2 Nc8 56 Kf3 Nb6 57 Bc2
a4 58 Ne2 a3 59 Nc1 Kg5 60 Na2 Bh5+

Final position: The Baron resigns → 0-1
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0Z0Z0Z0Z
Z0Z0Z0Z0
0m0ZpZ0Z
Z0ZpO0jb
0ZpO0o0Z
o0O0ZKZ0
NZBZ0Z0Z
Z0Z0Z0Z0

Round 5: Loop Leiden - Hiarcs X MP, Closed Catalan (E06): Early devi-
ations

1 d4 d5 2 c4 c6 3 Nf3 e6 4 Qc2 Nf6 5 g3 Be7 6 Bg2 O-O 7 O-O b6 8
Bf4 Ba6 9 Nbd2 Nbd7 10 Rac1 Nh5 11 Be3 Nhf6 12 Bf4 Nh5 13 Be3
Nhf6 14 Bf4

Final position: Drawn by threefold repetition → 0.5-0.5

rZ0l0skZ
o0Znapop
bopZpm0Z
Z0ZpZ0Z0
0ZPO0A0Z
Z0Z0ZNO0
POQMPOBO
Z0S0ZRJ0

Round 6: Fruit - Loop Leiden, Semi-Slav: Meran System (D48): 7. . . b5 8
Bd3 a6

1 d4 Nf6 2 c4 e6 3 Nf3 d5 4 Nc3 c6 5 e3 Nbd7 6 Bd3 dXc4 7 BXc4 b5
8 Bd3 a6 9 e4 c5 10 d5 c4 11 Bc2 Qc7 12 dXe6 fXe6 13 O-O Bb7 14
Ng5 Nc5 15 e5 QXe5 16 Re1 Qd6 17 QXd6 BXd6 18 Be3 Nd3 19 BXd3
cXd3 20 Rad1 b4 21 Na4 Ng4 22 h3 Bh2+ 23 Kf1 NXe3+ 24 RXe3 O-O
25 g3 Rac8 26 NXe6 Rf3 27 RdXd3 Rc1+ 28 Ke2 RXe3+ 29 RXe3 Bc6
30 Nac5 Rc2+ 31 Ke1 RXb2 32 Nd3 Rb1+ 33 Kd2 Bg1 34 Nd4 Bd5 35
Nf5 Kf8 36 Nd6 g6 37 Re8+ Kg7 38 Re7+ Kg8 39 h4 Kf8 40 Rc7 Be6
41 Ne4 Bf5 42 Ke3 a5 43 h5 gXh5 44 Ra7 BXe4 45 KXe4 BXf2 46 NXf2
Rb2 47 Nd3 RXa2 48 RXh7 b3 49 RXh5 a4 50 Rb5 Rg2 51 Rb8+ Ke7
52 Kf3 Rg1 53 Nc5 a3 54 Rb7+ Kf6 55 Rb6+ Kg7 56 NXb3 Rb1 57 Rb7+

Final position: Insufficient material → 0.5-0.5
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0Z0Z0Z0Z
ZRZ0Z0j0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
oNZ0ZKO0
0Z0Z0Z0Z
ZrZ0Z0Z0

Round 7: The King - Loop Leiden, Sicilian Najdorf (B90): Unusual White
6th moves, 6 Be3 Ng4 and 6 Be3 e5

1 e4 c5 2 Nf3 d6 3 d4 cXd4 4 NXd4 Nf6 5 Nc3 a6 6 Be3 e5 7 Nb3
Be7 8 f3 Be6 9 Qd2 O-O 10 O-O-O Nbd7 11 g4 b5 12 g5 Nh5 13 Nd5
BXd5 14 eXd5 Qc7 15 Kb1 Nb6 16 Na5 NXd5 17 QXd5 QXa5 18 c4
Rab8 19 Bd3 Qd8 20 Rhg1 bXc4 21 BXc4 a5 22 Rg2 g6 23 Qe4 Kh8
24 f4 f6 25 Re2 Qc8 26 Rc2 Qg4 27 Be2 Qh3 28 fXe5 fXe5 29 Ba7 Rb4
30 Qd5 a4 31 Qa5 Qh4 32 a3 Re4 33 Qd5 Ng7 34 Bb5 Rg4 35 Bd7
RXg5 36 Qc6 Nf5 37 QXa4 Rg4 38 Qb3 Nd4 39 Qa4 Rgf4 40 BXd4
eXd4 41 Qc4 Bf6 42 Bc6 Bg7 43 Rg1 R4f5 44 Qd3 Bh6 45 Be4 Re5
46 Bc6 Re3 47 Qc4 Qf6 48 Rd1 d3 49 Rg2 Rc8 50 Qb5 Re7 51 Ka2
d2 52 Bd5 Re1 53 RgXd2 BXd2 54 RXd2 Qf4 55 Qb7 Rf8 56 Rc2 Qf5
57 Qc6 Qe5 58 Rd2 Rb8 59 Qc2 Rf1 60 Qd3 Qf6 61 Qc4 Rf8 62 h3
Rf4 63 Qd3 Re8 64 Bc6 Rd8 65 Bd5 Qe5 66 b4 Rc8 67 Kb3 Rc1 68
Bg2 Qa1 69 Rb2 Kg7 70 Be4 Re1 71 Qc3+ Kh6 72 Bf3 Rb1 73 RXb1
QXb1+ 74 Ka4 Qf5 75 Bg2 d5 76 Qc5 Qd7+ 77 Kb3 d4 78 Qc1 Qe6+

79 Ka4 g5 80 h4 RXh4 81 Qf1 Rf4 82 Qd3 g4 83 Kb5 Qe3 84 Kc4 g3
85 Bc6 Qc1+ 86 Kb5 Qf1 87 Kc4 g2 88 BXg2 QXg2

Final position: The King resigns → 0-1

0Z0Z0Z0Z
Z0Z0Z0Zp
0Z0Z0Z0j
Z0Z0Z0Z0
0OKo0s0Z
O0ZQZ0Z0
0Z0Z0ZqZ
Z0Z0Z0Z0

Round 8: Loop Leiden - Deep Gandalf, Sicilian Najdorf (B90): Unusual
White 6th moves, 6 Be3 Ng4 and 6 Be3 e5

1 e4 c5 2 Nf3 d6 3 d4 cXd4 4 NXd4 Nf6 5 Nc3 a6 6 Be3 e5 7 Nb3
Be6 8 f3 Be7 9 Qd2 O-O 10 O-O-O a5 11 Bb5 Nc6 12 Qe2 Qc7
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13 Kb1 Na7 14 Ba4 b5 15 BXb5 NXb5 16 NXb5 Qb8 17 c4 Rc8 18
Rc1 Rc6 19 Nd2 BXc4 20 NXc4 QXb5 21 Rhe1 Ne8 22 Rc2 Rb8 23
Na3 Qb7 24 RXc6 QXc6 25 Rc1 Qb7 26 Nc4 Bd8 27 Rd1 Qc6 28
Qd3 Bc7 29 g4 Rb4 30 Rc1 Qb7 31 Rc2 Qb8 32 h4 a4 33 h5 Rb5
34 h6 g6 35 g5 Bd8 36 Ka1 Rb4 37 Qa3 Qb7 38 Bd2 Rb5 39 QXa4
Kf8 40 Be3 Be7 41 a3 Bd8 42 b4 Ke7 43 Rd2 Bc7 44 Rd3 Qc6 45
Qb3 Qb7 46 Ka2 Kf8 47 Bc5 dXc5 48 Rd7 RXb4 49 aXb4 Qa6+ 50 Na3

Final position: Deep Gandalf resigns → 1-0

0Z0Znj0Z
Z0aRZpZp
qZ0Z0ZpO
Z0o0o0O0
0O0ZPZ0Z
MQZ0ZPZ0
KZ0Z0Z0Z
Z0Z0Z0Z0

Round 9: IsiChess MMX - Loop Leiden, Semi-Slav (D46): 5 e3 Nbd7 6
Bd3, Black avoid the Meran

1 e4 c5 2 Nf3 d6 3 d4 cXd4 4 NXd4 Nf6 5 Nc3 a6 6 Be3 e5 7 Nb3
Be6 8 f3 Be7 9 Qd2 O-O 10 O-O-O a5 11 Bb5 Nc6 12 Qe2 Qc7
13 Kb1 Na7 14 Ba4 b5 15 BXb5 NXb5 16 NXb5 Qb8 17 c4 Rc8 18
Rc1 Rc6 19 Nd2 BXc4 20 NXc4 QXb5 21 Rhe1 Ne8 22 Rc2 Rb8 23
Na3 Qb7 24 RXc6 QXc6 25 Rc1 Qb7 26 Nc4 Bd8 27 Rd1 Qc6 28
Qd3 Bc7 29 g4 Rb4 30 Rc1 Qb7 31 Rc2 Qb8 32 h4 a4 33 h5 Rb5
34 h6 g6 35 g5 Bd8 36 Ka1 Rb4 37 Qa3 Qb7 38 Bd2 Rb5 39 QXa4
Kf8 40 Be3 Be7 41 a3 Bd8 42 b4 Ke7 43 Rd2 Bc7 44 Rd3 Qc6 45
Qb3 Qb7 46 Ka2 Kf8 47 Bc5 dXc5 48 Rd7 RXb4 49 aXb4 Qa6+ 50 Na3

Final position: IsiChess MMX resigns → 0-1

0Z0Znj0Z
Z0aRZpZp
qZ0Z0ZpO
Z0o0o0O0
0O0ZPZ0Z
MQZ0ZPZ0
KZ0Z0Z0Z
Z0Z0Z0Z0
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C.2 15
th World Computer-Chess Championship

The 15th World Computer-Chess Championship was held from 11th to 18th

of June 2007, in the Science Park Amsterdam (NL). The organiser was the
International Computer Games Association (ICGA). The event together with
computer games workshops, was sponsored by IBM, SARA Computing and
Networking Services, and NCF (Foundation of National Computing Facilities).1

Twelve programs took part in the round robin event. The playing tempo was 90
minutes per computer-chess engine. Clemens Keck was the operator of Loop

Amsterdam and the book designer. Loop Amsterdam was installed on a
quad-core Intel Woodcrest at 4 × 3000 MHz.

In Table C.3 the time schedule and the results of Loop Amsterdam are given.
In Table C.4 the tournament results of the 15th World Computer-Chess Cham-
pionship are summarized. Further information about this tournament and the
final contingency table can be found at the ICGA website [54]. All games played
by Loop Amsterdam in 11 rounds are chronologically listed below.

Time Schedule and the Results of Loop

Round Day White Black Result

1 Monday GridChess Loop Amsterdam 0.5-0.5

2 Tuesday Loop Amsterdam Shredder 0-1

3 Tuesday The King Loop Amsterdam 0-1

4 Wednesday Loop Amsterdam Rybka 0.5-0.5

5 Wednesday Zappa Loop Amsterdam 1-0

6 Friday micro-Max Loop Amsterdam 0-1

7 Saturday Loop Amsterdam Jonny 1-0

8 Saturday IsiChess Loop Amsterdam 0-1

9 Sunday Loop Amsterdam The Baron 0.5-0.5

10 Sunday Deep Sjeng Loop Amsterdam 0-1

11 Monday Loop Amsterdam Diep 1-0

Table C.3: Time schedule and the results of Loop at the 15th World Computer-
Chess Championship 2007, Amsterdam (NL).

1For more information see: http://www.chessbase.com/newsdetail.asp?newsid=3936
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Result of the 15th World Computer-Chess Championship

Rank Program Country Games Score

1 Rybka USA 11 10.0

2 Zappa Turkey 11 9.0

3 Loop Amsterdam Germany 11 7.5

4 Shredder Germany 11 7.0

5 GridChess Germany 11 7.0

6 Deep Sjeng Belgium 11 6.0

7 Jonny Germany 11 5.0

8 Diep Netherlands 11 4.5

9 The Baron Netherlands 11 4.0

10 IsiChess Germany 11 3.5

11 The King Netherlands 11 2.5

12 micro-Max Netherlands 11 0.0

Table C.4: Tournament result of the 15th World Computer-Chess Championship
2007, Amsterdam (NL).
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Round 1: GridChess - Loop Amsterdam, Queen’s Gambit Declined (D30):
System without Nc3

1 d4 d5 2 c4 c6 3 Nf3 e6 4 Qc2 Nf6 5 e3 a6 6 Nbd2 Nbd7 7 b3 c5 8
Bd3 b6 9 Bb2 Bb7 10 O-O Rc8 11 cXd5 NXd5 12 Qb1 cXd4 13 BXd4
Bb4 14 a3 BXd2 15 NXd2 Nc5 16 Be4 NXe4 17 QXe4 Qe7 18 Qe5
f6 19 Qh5+ g6 20 Qh6 e5 21 e4 eXd4 22 eXd5 Kf7 23 Nc4 BXd5 24
NXb6 Rcd8 25 Rfe1 Qb7 26 NXd5 QXd5 27 Rac1 d3 28 Rc7+ Rd7 29
Rc8 RXc8 30 QXh7+ Kf8 31 Qh8+ Qg8 32 QXf6+ Qf7 33 Qh8+ Qg8
34 Qf6+ Rf7 35 Qd6+ Kg7 36 Qd4+ Kh7 37 Qh4+ Kg7 38 Qd4+ Kh6

Final position: Drawn by threefold repetition → 0.5-0.5

0ZrZ0ZqZ
Z0Z0ZrZ0
pZ0Z0Zpj
Z0Z0Z0Z0
0Z0L0Z0Z
OPZpZ0Z0
0Z0Z0OPO
Z0Z0S0J0

Round 2: Loop Amsterdam - Shredder, Queen’s Gambit Declined (D53):
4 Bg5 Be7, Early deviations

1 d4 Nf6 2 c4 e6 3 Nc3 d5 4 Nf3 Be7 5 Bg5 h6 6 BXf6 BXf6 7 cXd5
eXd5 8 Qb3 c6 9 e3 Nd7 10 Bd3 O-O 11 O-O Re8 12 Rae1 Nb6 13
h3 Qc7 14 Rc1 Bd8 15 Rfe1 Be6 16 Qc2 Be7 17 Re2 Rac8 18 Rce1
Bf8 19 e4 dXe4 20 BXe4 Qd7 21 Bd3 Rcd8 22 a3 Qc8 23 b4 Nd5 24
NXd5 BXd5 25 Ne5 Qc7 26 Bh7+ Kh8 27 Be4 Kg8 28 h4 BXe4 29
RXe4 Qd6 30 g3 Qd5 31 Nc4 RXe4 32 RXe4 Qf5 33 Qe2 g6 34 Na5
Qd7 35 h5 g5 36 Kg2 b6 37 Nc4 Bg7 38 Ne5 Qd5 39 Qf3 BXe5 40
dXe5 Rd7 41 Qe2 c5 42 Kh2 Kf8 43 Rc4 Re7 44 f4 gXf4 45 gXf4 Qd8
46 bXc5 Rd7 47 Rc2 Qh4+ 48 Kg2 bXc5 49 Rd2 Rb7 50 Qf2 Qg4+ 51
Qg3 QXh5 52 Qf3 QXf3+ 53 KXf3 Rc7 54 Rh2 Kg7 55 Rg2+ Kh7 56
Rc2 c4 57 Rc3 Kg7 58 a4 h5 59 f5 Kf8 60 Kf4 Ke7 61 Ke3 Rc8 62 Kf3
f6 63 e6 Kd6 64 Ke4 a5 65 Kd4 h4 66 Ke4 Rg8 67 Kf4 Kd5 68 Rc2
Kd4 69 Rd2+ Kc3 70 Rd7 h3 71 Kf3 Kb2 72 Rd2+ Kb3 73 Rh2 c3 74
RXh3 c2

Final position: Loop Amsterdam resigns → 0-1
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0Z0Z0ZrZ
Z0Z0Z0Z0
0Z0ZPo0Z
o0Z0ZPZ0
PZ0Z0Z0Z
ZkZ0ZKZR
0ZpZ0Z0Z
Z0Z0Z0Z0

Round 3: The King - Loop Amsterdam, Sicilian Najdorf (B90): Unusual
White 6th moves, 6 Be3 Ng4 and 6 Be3 e5

1 e4 c5 2 Nf3 d6 3 d4 cXd4 4 NXd4 Nf6 5 Nc3 a6 6 Be3 e5 7 Nb3 Be6
8 Qd2 Be7 9 f3 O-O 10 O-O-O Nbd7 11 g4 b5 12 g5 b4 13 Ne2 Ne8
14 f4 a5 15 f5 BXb3 16 cXb3 a4 17 bXa4 RXa4 18 b3 Ra5 19 Kb1 d5
20 eXd5 Bc5 21 BXc5 NXc5 22 QXb4 Nd6 23 Nc3 Qa8 24 Bb5 Rc8
25 Bc6 Qa7 26 a4 Rb8 27 Bb5 NXb5 28 NXb5 RaXb5 29 aXb5 Ra8 30
Kc1 Nd3+ 31 RXd3 Qa1+ 32 Kd2 QXh1 33 Qc3 g6 34 Ke3 Qg1+ 35
Kf3 Qf1+ 36 Ke3 Qf4+ 37 Ke2 gXf5 38 Rd2 QXh2+ 39 Kd1 Qg1+ 40
Ke2 e4 41 g6 hXg6 42 Qd4 Qh2+ 43 Qf2

Final position: The King resigns → 0-1

rZ0Z0ZkZ
Z0Z0ZpZ0
0Z0Z0ZpZ
ZPZPZpZ0
0Z0ZpZ0Z
ZPZ0Z0Z0
0Z0SKL0l
Z0Z0Z0Z0

Round 4: Loop Amsterdam - Rybka, Sicilian (B51): Moscow Variation (3
Bb5+) without 3. . . Bd7

1 e4 c5 2 Nf3 d6 3 Bb5+ Nc6 4 O-O Bd7 5 Re1 Nf6 6 c3 a6 7 Ba4
c4 8 d4 cXd3 9 QXd3 g6 10 Nd4 Ne5 11 BXd7+ QXd7 12 Qc2 Bg7
13 Nd2 O-O 14 N2f3 Rfd8 15 NXe5 dXe5 16 Nf3 Ne8 17 Bg5 Nd6 18
Rad1 Qc7 19 Rd3 Nc4 20 Red1 RXd3 21 RXd3 h6 22 Be3 f5 23 Rd1 e6
24 Bc1 Rd8 25 RXd8+ QXd8 26 Nd2 NXd2 27 QXd2 QXd2 28 BXd2
fXe4 29 Kf1 Kf7 30 Ke2 Kf6 31 c4 h5 32 b4 Bf8 33 c5 g5 34 a4 g4 35
a5 Ke7 36 Bg5+ Kd7 37 Ke3 Bg7 38 KXe4 Kc7 39 Kd3 e4+ 40 Kc4
Be5 41 g3 Kc6 42 Be3 Bf6 43 Bf4 h4 44 Bd2 h3 45 Bf4

Final position: Drawn by threefold repetition → 0.5-0.5
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0Z0Z0Z0Z
ZpZ0Z0Z0
pZkZpa0Z
O0O0Z0Z0
0OKZpApZ
Z0Z0Z0Op
0Z0Z0O0O
Z0Z0Z0Z0

Round 5: Zappa - Loop Amsterdam, Closed Sicilian (B25): 3 g3 lines
without early Be3

1 e4 c5 2 Nc3 Nc6 3 g3 g6 4 Bg2 Bg7 5 h3 Nf6 6 d3 d6 7 Nge2 Rb8 8
a4 Bd7 9 O-O O-O 10 f4 Kh8 11 Be3 Qa5 12 f5 Ng8 13 Kh1 Be5 14
g4 Nf6 15 Bf4 Nd4 16 BXe5 dXe5 17 Ng3 Qb6 18 Ra2 Qd6 19 Qd2
g5 20 Nd5 Rg8 21 b3 Rbd8 22 Raa1 Bc6 23 NXf6 QXf6 24 Nh5 Qd6
25 Rab1 Be8 26 f6 Rg6 27 b4 b6 28 a5 eXf6 29 bXc5 bXc5 30 Rb7 Rd7
31 Rfb1 Nc6 32 R7b5 Nd4 33 Rb8 Rd8 34 RXd8 QXd8 35 Rb7 Nc6
36 Qc3 NXa5 37 RXa7 Nc6 38 Rb7 Qd4 39 Qa3 Qd6 40 Qa6 Rg8 41
Qb6 Rg6 42 Qc7 QXc7 43 RXc7 Kg8 44 Ng3 Kf8 45 c3 Ne7 46 RXc5
Bd7 47 Nf5 NXf5 48 eXf5 Rg8 49 Rc7 Ke7 50 Bc6 Rd8 51 Kg2 Kd6
52 RXd7+ RXd7 53 BXd7 KXd7

Final position: Loop Amsterdam resigns → 1-0

0Z0Z0Z0Z
Z0ZkZpZp
0Z0Z0o0Z
Z0Z0oPo0
0Z0Z0ZPZ
Z0OPZ0ZP
0Z0Z0ZKZ
Z0Z0Z0Z0

Round 6: micro-Max - Loop Amsterdam, Sicilian (B30): 2. . . Nc6 3 Bb5,
lines without . . . g6

1 e4 c5 2 Nc3 Nc6 3 Nf3 e5 4 Bc4 Be7 5 Nd5 Nf6 6 NXe7 QXe7 7
Qe2 O-O 8 O-O d6 9 c3 Be6 10 BXe6 QXe6 11 d3 h6 12 Be3 c4 13
h3 cXd3 14 QXd3 d5 15 eXd5 NXd5 16 Qb5 a6 17 Qc4 Rac8 18 Bd2
Rfd8 19 Qe4 Nf6 20 Qe2 e4 21 Nh2 Ne5 22 Rfe1 Nd3 23 Reb1 Nd5
24 Nf1 f5 25 Ng3 Nf6 26 Nf1 f4 27 a4 f3 28 gXf3 Ne5 29 f4 Nf3+ 30
Kg2 Rc5 31 Ng3 RXd2 32 Qe3 Nh4+ 33 Kh2 Rh5 34 NXh5 Nf3+ 35
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Kg2 NXh5 36 Rh1 Qg6+ 37 Kf1 Ng3+ 38 fXg3 QXg3 39 Qe2 QXf4 40
QXd2 QXd2 41 Rd1 QXd1+ 42 Kf2 QXh1 43 Kg3 Qh2+ 44 Kg4 g6 45
c4 h5

Final position: micro-Max is mated → 0-1

0Z0Z0ZkZ
ZpZ0Z0Z0
pZ0Z0ZpZ
Z0Z0Z0Zp
PZPZpZKZ
Z0Z0ZnZP
0O0Z0Z0l
Z0Z0Z0Z0

Round 7: Loop Amsterdam - Jonny, Scotch Game (C45)

1 e4 e5 2 Nf3 Nc6 3 d4 eXd4 4 NXd4 Bc5 5 Be3 Qf6 6 c3 Qg6 7 Nd2
NXd4 8 cXd4 Bb6 9 h4 h5 10 a4 Ba5 11 Rc1 Nf6 12 f3 d5 13 e5 Ng8
14 Kf2 c6 15 Nb3 Bc7 16 Bd3 Bf5 17 BXf5 QXf5 18 Nc5 Ne7 19 Re1
O-O 20 Bg5 Ng6 21 Kg1 f6 22 g4 hXg4 23 fXg4 Qc8 24 eXf6 gXf6
25 Re6 Rf7 26 Qe2 b6 27 Nd3 Be5 28 RcXc6 BXd4+ 29 Kg2 Qf8 30
Rcd6 fXg5 31 RXg6+ Kh7 32 Rde6 Bf6 33 hXg5 KXg6 34 gXf6 Kh7 35 g5

Final position: Jonny resigns → 1-0

rZ0Z0l0Z
o0Z0ZrZk
0o0ZRO0Z
Z0ZpZ0O0
PZ0Z0Z0Z
Z0ZNZ0Z0
0O0ZQZKZ
Z0Z0Z0Z0

Round 8: IsiChess - Loop Amsterdam, Queen’s Gambit Declined (D31):
Semi-Slav without . . . Nf6

1 d4 d5 2 c4 e6 3 Nc3 c6 4 Nf3 dXc4 5 a4 Bb4 6 e3 b5 7 Bd2 a5 8
aXb5 BXc3 9 BXc3 cXb5 10 b3 Bb7 11 bXc4 b4 12 Bb2 Nf6 13 Bd3
Nbd7 14 O-O O-O 15 Re1 Ne4 16 Qc2 f5 17 c5 Bc6 18 Bc4 Qe7 19
Bb3 g5 20 Red1 g4 21 Ne1 Ndf6 22 Ra2 Bd5 23 Rda1 Qc7 24 Nd3
BXb3 25 QXb3 Nd5 26 Ne5 Ra7 27 Nc4 f4 28 Qd3 fXe3 29 fXe3 Qf7
30 Rf1 QXf1+ 31 QXf1 RXf1+ 32 KXf1 a4 33 Ra1 a3 34 Bc1 Nec3 35
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Nd6 NXe3+ 36 BXe3 b3 37 Nc4 b2 38 Re1 Ra4 39 NXa3 RXa3 40 Bc1
b1Q 41 BXa3 Qd3+

Final position: IsiChess resigns → 0-1

0Z0Z0ZkZ
Z0Z0Z0Zp
0Z0ZpZ0Z
Z0O0Z0Z0
0Z0O0ZpZ
A0mqZ0Z0
0Z0Z0ZPO
Z0Z0SKZ0

Round 9: Loop Amsterdam - The Baron, French (C13): Classical System:
4 Bg5 Be7, Alekhine-Chatard Attack

1 e4 e6 2 d4 d5 3 Nc3 Nf6 4 Bg5 dXe4 5 NXe4 Be7 6 BXf6 BXf6 7
Nf3 O-O 8 Bc4 Nc6 9 c3 e5 10 d5 Nb8 11 Qe2 Bf5 12 Ng3 Bg4 13
Qe4 BXf3 14 QXf3 Nd7 15 O-O Nb6 16 Bb3 a5 17 Rad1 a4 18 Bc2
g6 19 Rfe1 Bg7 20 Ne4 Nc4 21 Nc5 NXb2 22 Rb1 a3 23 NXb7 Qe7 24
Re4 f5 25 Rb4 e4 26 Qe3 Qe5 27 Nc5 QXc3 28 QXc3 BXc3 29 Rb3
Bd2 30 Ne6 Rfc8 31 g4 Nc4 32 Bd1 f4 33 Kg2 f3+ 34 Kg3 Ba5 35
Rb7 Bc3 36 Kf4 Nd6 37 R7b3 Bd2+ 38 Kg3 Kf7 39 h4 c6 40 Rb6 Ba5
41 Ng5+ Ke7 42 RXc6 RXc6 43 dXc6 h6 44 Nh3 Bc3 45 Kh2 Be5+ 46
Kg1 Ra5 47 g5 hXg5 48 NXg5 Rc5 49 Ba4 Rc4 50 Bb3 RXc6 51 Re1
Kf6 52 Nh7+ Kf5 53 Ng5 Rc5 54 Be6+ Kf6 55 Bb3 Rb5 56 Rb1 Ke7
57 Bc2 Rc5 58 BXe4 NXe4 59 NXe4 Rc2 60 Re1 Kf8 61 Ng5 Bg3 62
Rf1 BXh4 63 NXf3 Bf6 64 Rd1 RXa2 65 Rd6 Kg7 66 Ra6 Bc3 67 Kg2
Bb4 68 Ne5 Rc2 69 RXg6+ Kh7 70 Ra6 a2 71 Ng4 Kg7 72 Ne3 Rb2
73 Nc4 Rc2 74 Ne3 Rb2 75 Nc4 Re2 76 Ne3 Bc3 77 Kf3 RXe3+ 0.5-0.5

Final position: Insufficient material → 0.5-0.5

0Z0Z0Z0Z
Z0Z0Z0j0
RZ0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0a0sKZ0
pZ0Z0O0Z
Z0Z0Z0Z0
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Round 10: Deep Sjeng - Loop Amsterdam, Semi-Slav (D47): Meran Sys-
tem

1 d4 d5 2 c4 c6 3 Nc3 Nf6 4 e3 e6 5 Nf3 Nbd7 6 Bd3 dXc4 7 BXc4 b5
8 Bd3 Bb7 9 e4 b4 10 Na4 c5 11 e5 Nd5 12 O-O Rc8 13 NXc5 NXc5
14 dXc5 BXc5 15 Bd2 Ne7 16 Bb5+ Bc6 17 Ba6 Rc7 18 Qe2 O-O 19
Rad1 Qa8 20 Rc1 Ng6 21 Be3 Bb6 22 Ne1 Rd8 23 Bd3 Qb8 24 b3
a5 25 Rc2 BXe3 26 QXe3 Ne7 27 Qc5 Rdd7 28 Qe3 Nd5 29 Qe4 g6
30 Qf3 Bb7 31 Qg3 RXc2 32 NXc2 Nc3 33 Qe3 Qd8 34 Bc4 Rd2 35
Ne1 RXa2 36 Nf3 BXf3 37 QXf3 Qc7 38 Qd3 QXe5 39 h4 Ne2+ 40
Kh1 Kg7 41 g3 Qc5 42 Kg2 Nd4 43 h5 Nf5 44 Kg1 Nd6 45 Ba6 a4
46 h6+ Kf8 47 bXa4 Ra3 48 Qd1 RXg3+ 49 Kh2 Rc3 50 Bd3 Qd4 51
Be4 QXd1 52 RXd1

Final position: Deep Sjeng resigns → 0-1

0Z0Z0j0Z
Z0Z0ZpZp
0Z0mpZpO
Z0Z0Z0Z0
Po0ZBZ0Z
Z0s0Z0Z0
0Z0Z0O0J
Z0ZRZ0Z0

Round 11: Loop Amsterdam - Diep

1 e4 c5 2 Nf3 d6 3 Bb5+ Bd7 4 BXd7+ NXd7 5 O-O Ngf6 6 Nc3 g6
7 d3 Bg7 8 h3 Qb6 9 a4 O-O 10 Bg5 QXb2 11 Nb5 c4 12 d4 Qb4 13
Re1 Rfc8 14 Bd2 c3 15 NXc3 Qc4 16 Ra3 e6 17 Rb3 b6 18 Be3 h6 19
Qc1 Kh7 20 Nd2 Qc6 21 Qb2 a6 22 Qc1 d5 23 e5 Ng8 24 Nf3 Ne7
25 Qd1 Qc7 26 Bc1 Qc4 27 Re3 Nc6 28 h4 Na5 29 Rb1 Qc6 30 Rd3
Qb7 31 h5 Rc7 32 hXg6+ fXg6 33 Ne1 Rc4 34 Rh3 Qc8 35 Ne2 Qe8
36 Nf3 Rac8 37 BXh6 BXh6 38 Ng5+ Kg7 39 Qd2 RXc2 40 NXe6+ Kf7
41 QXh6 QXe6 42 Nf4 Qf5 43 Rf3 NXe5 44 dXe5 Rc1+ 45 RXc1 RXc1+

46 Kh2 QXe5 47 Re3 QXe3 48 fXe3 Rc6 49 Qh7+ Ke8 50 NXd5

Final position: Diep is mated in 14 moves (verified by Loop Amsterdam):
50. . . Kd8 51 e4 Kc8 52 e5 Rc5 53 Qg8 Kb7 54 Qd8 Nc4 55 e6 Rc8 56 Qd7+

Kb8 57 e7 b5 58 e8Q RXe8 59 QXe8+ Kb7 60 aXb5 aXb5 61 QXb5 → 1-0
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0Z0ZkZ0Z
Z0Z0Z0ZQ
porZ0ZpZ
m0ZNZ0Z0
PZ0Z0Z0Z
Z0Z0O0Z0
0Z0Z0ZPJ
Z0Z0Z0Z0
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Summary

The thesis investigates the most important requirements, objectives, rules, and
theories for the development of state-of-the-art computer-chess architectures.
For this task we focus on the question how to develop new computer-chess ar-
chitectures that make it possible to implement complex chess knowledge leading
to a higher overall performance by a higher computing speed. Furthermore, the
implemented data structures should be straightforward and compact in order
to minimise unnecessary overhead.

The computer-chess architectures and the corresponding algorithms should per-
form on different hardware and software environments. The following problem
statement guides our research.

Problem statement: How can we develop new computer-chess ar-
chitectures in such a way that computer-chess engines combine the
requirements on knowledge expressiveness with a maximum of effi-
ciency?

To answer the problem statement we formulated three research questions. They
deal with (1) the development and analysis of a non-bitboard computer-chess
architecture, (2) the development and analysis of a computer-chess architecture
based on magic multiplication, and (3) the development and analysis of a static
exchange evaluator (SEE) with αβ-approach. A precise formulation is given
later in this summary.

Chapter 1 is a general introduction of computer-chess architectures. Our prob-
lem statement and the three research questions are formulated. Every research
question is discussed and answered in an own chapter. In turn they seek to
answer the problem statement.

Chapter 2 describes the development of a non-bitboard computer-chess architec-
ture which is carried out on an R&D basis of the computer-chess engines Loop

Leiden 2006 and Loop Express. One of the objectives of the new computer-
chess architecture is a strong and homogeneous data structure that can also be
used in the environment of a multi-core computer-chess engine. Therefore, we
imposed three criteria on the used data structures, which are (1) competitive-
ness in speed, (2) simplicity, and (3) ease of implementation. This challenge has
led us to the first research question.
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136 SUMMARY

Research question 1: To what extent can we develop non-bitboard
computer-chess architectures, which are competitive in speed, sim-
plicity, and ease of implementation?

Although based on the experiences gained during the development of the Loop

computer-chess β-engines 2005-2006, the 32-bit computer-chess architecture for
Loop Leiden was written from scratch. We focus on the development of
the chessboard and the management of chessboard-related information. Only
if these new developments are in a harmonious interplay, a high-performance
framework for the highest requirements on a computer-chess engine can be im-
plemented.

These technologies have proven their performance within the computer-chess
engine Loop Leiden at the 26th Open Dutch Computer-Chess Championship,
Leiden (NL) 2006. The engine was able to reach the 2nd place. Furthermore,
this non-bitboard computer-chess architecture has been used in two external
projects, the Chess Machine Hydra and Nintendo Wii Chess, since 2006.

Chapter 3 focuses on the development of a complete computer-chess architec-
ture based on hash functions and magic multiplications for the examination of
bitboards. This has led us to the second research question.

Research question 2: To what extent is it possible to use hash
functions and magic multiplications in order to examine bitboards in
computer chess?

In this chapter the basics of the magic hash approach and the magic hash
functions are examined. In order to answer the second research question, an
advanced version of our computer-chess architecture so far must be developed.
The implementation of this computer-chess architecture is based on a perfect
mapping function and on 64-bit unsigned integers (bitboards).

For the development of a well performing magic hash algorithm, only basic
arithmetic and Boolean operations are used. Two main objectives of this chapter
are the indication of (1) arbitrary n-bit unsigned integers, such as multiple 1-bit
computer words, and (2) compound bit-patterns via hash functions. Only in
this way it is possible to develop (1) a challenging bit scan and (2) the movement
of sliding pieces without computing redundant rotated bitboards.

The new computer-chess architecture is implemented in the computer-chess en-
gine Loop Amsterdam. This engine was able to reach the 3rd place at the
15th World Computer-Chess Championship, Amsterdam (NL) 2007. An essen-
tial reason for the success of this 64-bit computer-chess engine was the use of
highly sophisticated perfect hash functions and magic multipliers for the com-
putation of compound bit-patterns (bitboards) via perfect hashing.

Chapter 4 deals with the R&D of a straightforward and more efficient static
exchange evaluator (SEE) for the computer-chess engine Loop Amsterdam.

The SEE is an important module of the computer-chess architecture for the
evaluation of moves and threatened squares. When using an αβ-window it is
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possible to implement efficient pruning conditions. The benefit of the pruning
conditions is the reduction of an iterative computation. The third research
question deals with the theoretical elements and the implementation of different
SEE-algorithms.

Research question 3: How can we develop an αβ-approach in
order to implement pruning conditions in the domain of static ex-
change evaluation?

The development of an SEE is a challenging issue. After the introduction of
the SEE algorithm, recursive and iterative implementations are examined. An
αβ-window to control the evaluation is introduced on the basis of an iterative
approach. Due to the new architecture of the algorithm, the implementation of
pruning conditions is possible.

Some typical applications of the SEE in the field of a computer-chess engine are
introduced. The applications range from move ordering and move selection to
the control of search extensions and to the evaluation of passed-pawn structures.
Due to the variety of possible applications of the SEE, it is interesting to scruti-
nize the complex algorithm and the extensive possibilities of an implementation
within a state-of-the-art computer-chess architecture.

The last chapter of the thesis contains the research conclusions and recommen-
dations for future research. Taking the answers to the three research questions
into account, we are able to give an answer to our problem statement. All imple-
mentations were tested in the environment of the state-of-the-art computer-chess
engines Loop Leiden 2006 and Loop Amsterdam 2007. So, every idea and
technology is tested and evaluated in a competitive computer-chess program.
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Samenvatting

Het proefschrift behandelt de belangrijkste voorwaarden, doelstellingen, regels
en theoretische benadering voor de ontwikkeling van geavanceerde computer-
schaak-architecturen. Om dit te bereiken concentreren we ons op de vraag hoe
we nieuwe computerschaak-architecturen kunnen ontwikkelen die het mogelijk
maken om complexe schaakkennis te implementeren zodat betere spelprestaties
worden verkregen mede als gevolg van een grotere computersnelheid. Bovendien
moeten de gëımplementeerde gegevensstructuren eenvoudig en compact zijn om
onnodige overhead te minimaliseren.

De computerschaak-architecturen en de daarbij behorende algoritmen moeten
op verschillende hardware-platforms en in verschillende software-omgevingen
functioneren. De onderstaande probleemstelling geeft richting aan ons onder-
zoek.

Probleemstelling: Hoe kunnen we nieuwe computerschaak-archi-
tecturen ontwikkelen zodat computerschaakprogramma’s de voorwaar-
den die opgelegd zijn aan het formuleren van schaakkennis com-
bineren met een maximale efficiëntie?

Om deze probleemstelling te beantwoorden formuleren we drie onderzoeksvra-
gen. Ze betreffen (1) de ontwikkeling en analyse van een niet-bitbord gebaseerde
computerschaak-architectuur, (2) de ontwikkeling en analyse van een computer-
schaak-architectuur die is gebaseerd op magisch vermenigvuldigen, en (3) de
ontwikeling en analyse van een statische afruilevaluator (static exchange evalu-
ator, SEE) binnen een αβ-benadering. Een preciese formulering wordt verderop
in deze samenvatting gegeven.

Hoofdstuk 1 is een algemene inleiding in computerschaak-architecturen. We
formuleren onze probleemstelling en de drie onderzoeksvragen. Iedere onder-
zoeksvraag wordt behandeld en beantwoord in een apart hoofdstuk. Gezamen-
lijk zullen zij een antwoord geven op de probleemstelling.

Hoofdstuk 2 beschrijft de ontwikkeling van een niet-bitbord gebaseerde compu-
terschaak-architectuur, die gëımplementeerd is in de computerschaak program-
ma’s Loop Leiden 2006 en Loop Express. Een van de doeleinden van de
nieuwe computerschaak-architectuur is een krachtige en homogene gegevens-
structuur die ook in een multi-core schaakprogramma gebruikt kan worden.
Daarom hebben we drie eisen aan de te gebruiken gegevensstructuur opgelegd,

139



140 SAMENVATTING

namelijk competitief zijn aangaande (1) snelheid, (2) eenvoud, en (3) implemen-
tatiegemak. Deze uitdaging bracht ons tot de eerste onderzoeksvraag.

Onderzoeksvraag 1: In hoeverre kunnen we niet-bitbord gebaseerde
computerschaak-architecturen ontwikkelen, die competitief zijn wat
betreft snelheid, eenvoud, en implementatiegemak?

Hoewel het is gebaseerd op ervaringen met de ontwikkeling van de β-versies van
Loop 2005-2006 computerschaakprogramma’s is de 32-bits computerschaak-
architectuur voor het Loop Leiden programma volledig opnieuw geschreven.
We richten ons daarbij op de ontwikkeling van het schaakbord en het beheer
van schaakbord-gerelateerde informatie. Enkel als deze nieuwe ontwikkelingen
een harmonieus geheel vormen kan een raamwerk dat tot hoge spelprestaties
leidt ontwikkeld worden, zodanig dat het voldoet aan de hoogste eisen van een
computerschaakprogramma.

Deze technologieën hebben hun kracht bewezen in het computerschaakprogram-
ma Loop Leiden tijdens het 26e Open Nederlands Computerschaak Kampi-
oenschap, Leiden (NL) 2006. Het programma wist de tweede plaats te behalen.
Verder is de niet-bitbord gebaseerde computerschaak-architectuur sinds 2006
gebruikt in twee externe projecten, te weten in de Schaak Machine Hydra en
in Nintendo’s Wii Chess.

Hoofdstuk 3 behandelt de ontwikkeling van een volledige computerschaak-archi-
tectuur die gebaseerd is op hash-functies en het magisch vermenigvuldigen van
twee getallen bij het onderzoeken van bitborden. Dit heeft ons tot de tweede
onderzoeksvraag gebracht.

Onderzoeksvraag 2: In hoeverre is het mogelijk om hash-functies
en magisch vermenigvuldigen te gebruiken om bitborden in compu-
terschaak te onderzoeken?

In dit hoofdstuk onderzoeken we de grondslagen van de magische hash-benade-
ring en van magische-hash functies. Om de tweede onderzoeksvraag te beant-
woorden moet een geavanceerde computerschaak-architectuur ontwikkeld wor-
den. De implementatie van deze computerschaak-architectuur is gebaseerd op
een perfecte afbeeldingsfunctie en op 64-bits unsigned integers (bitborden).

Voor de ontwikkeling van een goed presterende magisch hash-algoritme zal
alleen gebruik worden gemaakt van standaard rekenkundige en Booleaanse be-
werkingen. De twee belangrijkste doelstellingen van dit hoofdstuk zijn het
bepalen van (1) willekeurige n-bits unsigned integers, zoals meervoudige 1-bits
computerwoorden, en (2) samengestelde bit-patronen met behulp van hash-
functies. Alleen op deze manier is het mogelijk (1) om een uitdagende bit-scan
te ontwikkelen, en (2) om de zetten van de lange-afstands stukken te bepalen
zonder overbodige geroteerde bitborden te berekenen.

De nieuwe computerschaak-architectuur is gëımplementeerd in het computer-
schaak programma Loop Amsterdam. Dit programma wist de derde plaats te
behalen op het 15e Wereld Computerschaak Kampioenschap, Amsterdam (NL)
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2007. Een belangrijke reden voor het succes van dit 64-bits computerschaakpro-
gramma was de berekening van samengestelde bit-patronen (bitborden) met be-
hulp van perfecte hash-methoden.

Hoofdstuk 4 behandelt de implementatie van een eenvoudige en efficiënte statis-
che afruilevaluator (SEE) voor het computerschaakprogramma Loop Amster-

dam.

De SEE is een belangrijke module van de computerschaak-architectuur voor de
evaluatie van zetten en van bedreigde velden. Bij gebruik van een αβ-raam is het
mogelijk om efficiënte voorwaarden om te snoeien te bepalen. Het voordeel van
het bepalen van deze voorwaarden tot snoeien is het reduceren van een iteratieve
berekening. De derde onderzoeksvraag gaat over de theoretische bestanddelen
en de implementatie van verschillende SEE-algoritmen.

Onderzoeksvraag 3: Hoe kunnen we een αβ-benadering ontwikke-
len om voorwaarden voor snoeien op het gebied van statische afruil-
evaluatoren te implementeren?

De ontwikkeling van een SEE is een uitdagende taak. Na een eerste introductie
van het SEE-algoritme zullen er recursieve en iteratieve implementaties onder-
zocht worden. Een αβ-raam om de evaluatie te regelen wordt gëıntroduceerd;
het is gebaseerd op een iteratieve benadering. Dankzij de nieuwe architectuur
van het algoritme is het mogelijk om de voorwaarden tot snoeien te imple-
menteren.

Enkele typische toepassingen van de SEE op het gebied van een computer-
schaakprogramma worden besproken. De toepassingen bestrijken onderwerpen
als zetordening en zettenselectie, het regelen van zetextensies, en de evaluatie-
structuren voor een doorgebroken pion.

Door de gevarieerde toepassingen van de SEE is het interessant in detail te
onderzoeken hoe het complexe algoritme precies werkt en wat de uitgebreide
mogelijkheden van de implementatie binnen het domein van geavanceerde com-
puterschaak-architecturen zijn.

Het laatste hoofdstuk van het proefschrift bevat de onderzoeksconclusies en de
aanbevelingen voor toekomstig onderzoek. Op basis van de antwoorden op de
drie onderzoeksvragen zijn we in staat een antwoord op de probleemstelling
te geven. Alle implementaties zijn getest binnen de geavanceerde computer-
schaakprogramma’s Loop Leiden 2006 en Loop Amsterdam 2007. Kort-
om, ieder idee en iedere technologie is getest en geëvalueerd in een competitief
computerschaakprogramma.
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