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Fuzzy Cognitive Maps (FCMs) hold promise as a mathematical tool for modeling and simulating complex
systems due to their transparency, flexibility to operate on prior knowledge structures and recurrent reasoning
characteristics. However, they suffer from significant shortcomings that have prevented them from being more
widely used. Some of these issues include discrepancies in component interpretation, saturation of neural
concepts, arbitrary nonlinearities, and dynamic behaviors that are difficult to align with the problem domain.
By integrating theoretical advances with practical needs, this paper proposes a revised modeling and simulation
methodology termed “neural cognitive mapping” that addresses these issues holistically. Firstly, we redefine
concepts’ activation values in terms of changes rather than absolute values, ensuring a unified interpretation
of the model’s components. Secondly, we propose a parameterized activation function, called “exponential
normalized activator”, which allows experts to control the neurons’ nonlinearities while avoiding saturation
states. Furthermore, we provide a twofold reasoning rule that simultaneously computes the concepts’ changes
and the amounts of resources attached to problem variables. Thirdly, we introduce a framework for interpreting
simulation results across various dynamic behaviors, including scenarios with unique fixed-point attractors. The
simulations using both real-world case studies and synthetically generated data illustrate the superiority of our
proposal compared with the traditional approach in terms of clarity, usefulness, consistency, and controllability.
Moreover, the empirical studies opened new research directions to be explored in future research.

1. Introduction activation values in the desired interval. Thirdly, they define what-if
scenarios such that the if-part is encoded as the initial activation values

Fuzzy Cognitive Maps (FCMs) [1] are knowledge-based recurrent of neurons. Finally, the recurrent reasoning process is performed to

neural networks with interpretability features. While mainstream recur-
rent neural networks (such as the Long Short-term Memory or the Gated
Recurrent Unit) are devoted to processing sequences, FCMs represent
complex systems in terms of meaningful neural concepts and causal
relationships [2]. The key goal of FCM models is to capture hidden
patterns that characterize the relationships between the variables de-
scribing the problem. In that sense, a recurrent reasoning rule is used
to explore the pathways connecting one concept with another, thus
resulting in the desired hidden patterns.

Although FCMs have been applied in machine learning settings such
as pattern classification [3-5], multi-output regression [6] and time
series forecasting [7-9], they were originally conceived as a scenario
analysis tool enabling participatory modeling [10-13]. The simulation
methodology using FCMs could be summarized as follows. Firstly, the
domain experts define the problem variables to be mapped as neural
concepts and the causal relationships between them. Secondly, they
agree on the activation function responsible for keeping the concepts’
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obtain the what-part of the hypothetical scenario being tested.
Unfortunately, fuzzy cognitive mapping has been surrounded by
pitfalls and misconceptions that might have tarnished the potential of
a model, as discussed in [11,14]. One of the most controversial (maybe
harmless) issues concerns the “fuzzy” aspect of these recurrent neural
networks. Osoba and Kosko [15] claimed the following about the fuzzy
semantics of FCM models: “Fuzzy causal edges denote partial causality.
All-or-none causality can still occur but only as the endpoints of the spectrum
of causal influence. The same holds for the activation of a concept node”.
However, Carvalho [16] argued that “As one can see, FCMs are not true
“Fuzzy Systems”, since they can be defined by a couple of matrices and can
be inferred using iterative standard algebraic operations. The simple fact that
a system consists of variables defined with a continuous value ranging from
0 to 1 instead of Boolean values should not be enough to call it “Fuzzy””.
However, the FCM formalism involves more pressing issues, such
as (i) the misalignment between the interpretation of causal weights

Received 10 April 2024; Received in revised form 20 May 2024; Accepted 6 June 2024

Available online 8 June 2024

0950-7051/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
mailto:ysalgueiro@utalca.cl
https://doi.org/10.1016/j.knosys.2024.112089
https://doi.org/10.1016/j.knosys.2024.112089
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.112089&domain=pdf

G. Ndpoles et al.

and the interpretation of concepts’ activation values, (ii) the arbitrary
nonlinearity imposed by the activation function, which often saturates
toward the extremes of the activation interval, and (iii) the convergence
to unique fixed-point attractors or non-stable states. The literature
reports some promising yet isolated attempts devoted to addressing
these issues.

For example, Mpelogianni et al. [17] and Vergini et al. [18] pro-
posed a reasoning rule that operates with changes in the concepts’
activation values instead of using the concepts’ absolute values. In
both cases, the authors assumed the model is no longer close since it
receives external inputs. Koutsellis et al. [19] addressed the ambiguity
in the outcomes of FCM models equipped with sigmoid and hyperbolic
tangent activation functions. The rationale of their proposal consists
of estimating bounds for the slope of these non-linear functions such
that the concepts’ values fall in a so-called “almost-linear” region. The
obtained values are then normalized to ensure the concepts’ activa-
tion values expand to the desired activation interval. Moreover, they
performed a convergence analysis following the theoretical results by
Knight et al. [20] devoted to ensuring the convergence to unique-
fixed point attractors. Following an opposite path, Napoles et al. [21]
proposed a quasi-nonlinear reasoning rule coupled with a rescaled
activation function that ensures that the model will never converge
to a unique fixed-point attractor, which is desirable in most scenario
analysis tasks.

In this paper, we take inspiration from these solutions and present a
revised cognitive mapping methodology for modeling and simulation.
Our proposal, termed “neural cognitive mapping”, addresses all issues
mentioned above to a large extent. Firstly, we redefine the meaning
of concepts’ activation values to express changes rather than absolute
values and remove the misalignment between the interpretation of
the model’s components. This modification required integrating the
reasoning rule expressed in terms of neural concepts with another
equation expressed in terms of problem variables, thus aligning the
mathematical model with the physical system. To our knowledge, a few
attempts have been reported to map the simulation results back to the
problem domain. Secondly, we introduce a parameterized activation
function called “exponential normalized function” that allows the experts
to control the model’s nonlinearity, spanning from quasi-linear to ex-
ponential. Thirdly, we propose a detailed framework for interpreting
the simulation results in the presence of different dynamic behaviors,
including situations where the fixed-point attractor is unique.

The remainder of this paper is as follows. Section 2 goes over the
classic FCM formalism for modeling and simulation, while Section 3
analyzes relevant FCM issues that motivate our research. Section 4
presents the neural cognitive mapping methodology, which is the main
contribution of our paper. Section 5 conducts an empirical analysis
using three case studies and Section 6 provides concluding remarks and
future research endeavors.

2. Fuzzy cognitive maps

FCMs are graph-theoretic recurrent neural systems for modeling
and simulating complex systems that involve interconnected variables
and feedback loops [22]. Every concept C; in the network is modeled
as a neural processing entity described by its activation value in the
current th iteration. The activation vector A = (aY), s a’@, e ag\,’))
characterizes the system’s state in the current iteration ¢ € {1,2,...,T},
while the initial activation vector A® = (a(lo), e af.o), ,a(]?,)) encodes
the scenario to be simulated [23]. The interactions between concepts
are defined through a weight matrix Wy, , where N represents the
number of concepts depicted as nodes in the cognitive digraph. Each
edge is associated with a weight w;; € [-1,1] that quantifies the

influence that the ith concept exerts on the jth concept.
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Eq. (1) formalizes the recurrent reasoning rule used to compute the
activation value of the ith concept in each iteration given an initial
activation vector,

N
a$t+1) =f <Z ay)wji> 6h)
j=1

such that f(-) is the activation function [24] that ensures the concepts’
activation values always lie in a desired interval, typically [0, 1] or
[-1,1]. The activation functions addressed in this paper are described
below such that A® = (d(l'), ,Ezf.’) - ,ﬁ(]:,)) represents the raw activa-
tion vector and é,('t) is the raw activation value of the ith concept in the
current iteration.

Eq. (2) shows the generalized sigmoid activator, which produces
values in the (0, 1) interval,

_(t+1 1
(4™ = — “
1+e i
where 4 > 0 and 4 € R are parameters controlling the function slope
and offset, respectively.
Eq. (3) shows the saturation activator, which produces values in the
[—1, 1] interval,

-1, ifa™" < -1
£ (éf.””) =4, if —1<a" <1 3)
1, if Y > 1.

i

Eq. (4) depicts the rescaled activator, which produces values in the
[—1, 1] interval,
6(H—1) N -
i o =+
J, () = { TR IEAT#0 )
1

0 otherwise.

Eq. (5) depicts the hyperbolic tangent activator, which outputs
values in the (-1, 1) interval,

_(t+1) 7ﬁ(t+l)

ﬂ’ -_— i
o (‘7f~’+1)> _ :M])—:M. 5)
i +e i
The recurrent reasoning rule in Eq. (1) will stop when either (i) the
model converges to a fixed-point attractor, or (ii) a maximal number of
iterations T is reached. Overall, we have three possible states:

- Fixed point (31, € {I,....(T - D} : a"*" = Vi, v1 > 1,): the
FCM produces the same state vector after 7, thus al(.t”) = al(.’““) =
af.'“+2) == al(.T). If the fixed point is unique, the FCM model will
produce invariant states (i.e., the same state vector regardless of
the initial conditions).

« Limit cycle (3,, P € {1,...,(T =1} : & =4, Vi,Vt > 1,): the
FCM produces the same state vector periodically with period P,

thus al(.t”) = al(.t”+P) == a?"ﬂp), where 7, +jP <T.

» Chaos: the FCM produces different state vectors for successive
iterations with no clear pattern.

3. Motivation and challenges

In this section, we discuss relevant issues that hinder the practical
usability of FCMs in modeling and simulation settings. These limitations
render a potentially powerful technique obscure and fragile, often lead-
ing to misleading interpretations of the simulation results. Therefore,
these issues represent theoretical challenges that motivated the model
proposed in the following section.

Issue 1. The concepts’ activation values in a given iteration repre-
sent absolute quantities rather than changes expressed as increments or
decrements.

In order to understand the full extent of this widespread miscon-
ception, we first need to discuss how causal weights and activation



G. Ndpoles et al.

—— sigmoid hyperbolic tangent
1.0 r
+~ 05
=}
Q.
S
o
©» 0.0
c
[
=}
[9)
c-05
-1.0
-15 -10 -5 0 5 10 15

neuron's input

Fig. 1. Saturation issue when using the sigmoid and hyperbolic tangent functions.
Significant changes in the neuron’s input outside the gray region lead to nearly the
same neuron’s output.

values are understood in the FCM context. Let C; and C; denote two
neural concepts using the activation function f(x) to keep the concepts’
activation values in the desired interval. According to a significant body
of literature, the weight w;; # 0 connecting C; and C; can be interpreted
as described below.

* For w;; > 0 Increasing (or decreasing) the activation value of C;
leads to an increase (or a decrease) in the activation value of C e

* For w;; <0 Increasing (or decreasing) the activation value of C;
leads to a decrease (or an increase) in the activation value of C e

While this interpretation aligns reasonably well with the semantics
of dynamic systems, where simulations are often expressed in terms of
changes in the variables, it seems to clash with the reasoning rule in
Eq. (1). Such discordance stems from the fact that the system’s states
represent the absolute values of concepts in a given iteration rather
than depicting the changes they underwent from the previous iteration
to the current one.

Issue 2. Most activation functions quickly saturate toward the
extremes of the activation interval, preventing the neuron from sensing
changes.

FCM-based models are recurrent neural networks that need bounded
activation functions to prevent neurons’ activation values from explod-
ing. However, this comes at the cost of producing saturated states
where the quite dissimilar neuron inputs are associated with practically
the same output. Fig. 1 illustrates this issue for the sigmoid and
hyperbolic tangent function where values outside the gray area tend to
saturate the neural concept. In the case of the sigmoid function, f(x) —
0 when x — —oo while in the hyperbolic tangent function, f(x) - —1
when x — —co, and in both cases f(x) — 1 when x - +oc0. However,
in reality, these functions produce values close to the extremes of the
activation space when inputting raw activation values with relatively
small absolute values.

Another issue arises when using the sigmoid function, which is
widely employed as an activation function in the literature. It yields a
value of 0.5 when evaluated at x = 0, potentially leading to unexpected
behaviors during simulations. For instance, a sigmoid neuron receiv-
ing no input from connected neurons may suddenly activate, thereby
transmitting information to other neurons.

Issue 3. The model’s dynamics (and consequently the simulation
results) can change significantly depending on the adopted activation
function.

Fig. 2 depicts an FCM model for a simplified food chain involving
three concepts. The foundational knowledge encoded by this cogni-
tive neural structure is straightforward, with components having clear
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Fig. 2. Simplified food chain as an FCM model involving three neural concepts
(predator, prey, and grass).
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Fig. 3. Simulation results for the predator—prey-grass problem after activating all
concepts with 0.5 while using (a) the sigmoid function and (b) the hyperbolic tangent
function.

meanings for the problem domain. For example, predators flourish
in the presence of plentiful prey, while prey face challenges from
predators but benefit from abundant grass.

Let us initialize all concepts with a medium activation value (al(,o) =
0.5) and then perform the reasoning process using the sigmoid and
hyperbolic tangent activation functions. Fig. 3 depicts the simulation
results after performing 20 iterations. In this experiment, the sigmoid
function leads to a fixed-point attractor while the hyperbolic tangent
function yields cyclic patterns.

At first glance, the sigmoid FCM model appears to be the right
choice since it exhibits stable behavior, unlike the hyperbolic tangent
model, which fails to converge. However, in the sigmoid FCM model,
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the fixed-point attractor is unique, meaning that the system will pro-
duce the same output regardless of the initial activation vector. The
ramification of this phenomenon is that the model is not useful for
performing what-if simulations.

In the hyperbolic tangent model, we observe a lagged decrease in
both prey and grass as the number of predators increases, which is
a logical result for the former but seemingly illogical for the latter.
Conversely, as the number of predators decreases, there is an increase
in both prey and grass, which is a sensible outcome for the former
but apparently perplexing for the latter. However, reality unveils an
intermediary component: the prey. In essence, the dynamics of this
complex system unfold as follows: the presence of sufficient grass
attracts prey to the area, consequently attracting predators.

From this toy example, some relevant conclusions can be formal-
ized. Firstly, the same network employing different activation functions
should be regarded as different simulation models, potentially resulting
in varied outcomes. Secondly, models that fail to converge might depict
the true semantics of a dynamic system in contrast to models that con-
verge to unique fixed points. Thirdly, the choice of activation function
significantly influences the model’s nonlinearity and should be tailored
to the problem domain. Furthermore, the activation function should
provide the flexibility to represent a variety of nonlinear behaviors,
spanning from linear to exponential.

4. Neural cognitive mapping

In this section, we introduce a revised cognitive mapping methodol-
ogy that addresses the FCM issues discussed in the previous section to
a large extent. Additionally, we will provide useful recommendations
and best practices for the knowledge acquisition phase.

4.1. Interpretation of concepts’ activation values

To address the first issue discussed in the previous section, we will
redefine the interpretation of the concepts’ activation values describing
the system in each iteration to express changes instead of absolute
values.

That can be done by replacing the term al(.’) in Eq. (1) by the term
Aa?t), which denotes the change in the ith concept’s activation value in
the tth iteration. Therefore, the change vector AA® = (Aa(l’), ,Aa?t),
e Aa(N')) will describe the system in the #-the iteration. In line with
the original methodology, the domain expert is required to encode
the what-if scenario being simulated in terms of the initial changes
induced to the system. In practice, this knowledge is formalized through
the initial change vector 4A® = (Aa(l(», ,Aaf.(», ,Aa(18>), which is
employed to start the recurrent reasoning process.

A relevant aspect related to the redefinition of the concepts’ ac-
tivation values concerns the information provided by experts during
the knowledge acquisition process. The weight matrix exemplifies this
knowledge, requiring experts to identify pairs of related concepts and
delineate their interactions, either numerically or symbolically. Such a
delineation involves defining the direction and intensity of the causal
relationships. These pieces of knowledge can be captured using the
interface displayed in Fig. 4 where the expert indicated that an increase
on C; will cause a decrease on C; with an intensity of 2.5/10. Therefore,
we can conclude that w;; = -0.25 since the relationship between
concepts C; and C; is deemed inverse.

After the experts have defined the weight matrix, it is considered
good practice to add self-loops with w;; = 1.0 to those concepts having
no incoming connections. The rationale behind this practice is that
such concepts would otherwise lose their activation value in the first
iteration, thus contributing nothing to the reasoning process. However,
if a self-loop with w;; = 1.0 is added, the concept will maintain the same
activation value through successive iterations. Finally, isolated neural
concepts must be removed from the cognitive network.
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What would happen to Cj if we increase the value of Ci?

| would expect the value of Cj to increase as indicated below
© | would expect the value of Cj to decrease as indicated below

Decrease: o 2.5/10

Small Large

Fig. 4. Interface for domain experts to characterize the relationship between two neural
concepts.

Another aspect that demands attention is the meaning of iterations
in terms of time units [14]. We claim that domain experts must also
provide such information during the knowledge acquisition phase. In
practice, it could be formalized in a variety of ways (e.g., at the
concept level or the model level). For example, domain experts can
be presented with the following question: “How long does it take
for concept C; to exert an effect on concept C;?”. For simplicity, the
proposed methodology will assume a synchronous approach where all
neural concepts are associated with the same time unit. For example,
if the domain experts decide that the model is expressed in hours, then
we will need to perform 24 iterations to investigate the system’s state
after reaching one day.

4.2. Exponential normalized reasoning

Next, we will address the second issue discussed in the previous
section, which refers to the saturation issues induced by mainstream
activation functions such as the saturation, sigmoid, and hyperbolic
tangent functions. Moreover, we should provide the experts with the
flexibility to configure the system’s nonlinearity.

More explicitly, the exponential normalized reasoning presented be-
low fulfills three pivotal properties. Firstly, it accounts for the activa-
tion values of negative and positive concepts, denoting negative and
positive changes, respectively. Secondly, it addresses the saturation
issues where neural concepts are assigned values close to the extremes
of the activation space for a wide variety of incoming information
flows. Thirdly, it provides modelers with the flexibility to control the
nonlinearity of simulations, varying from linear to exponential. Eq. (6)
displays the reasoning rule that fulfills these properties,

N Bi
1 —(t+1 _(t+1
Aaf.’* g (Aa/(fr )) <|Aaf.’+ >|/Z |wﬁ|) (6)
j=1

such that

N

48V = 3 4d, e
j=1

where S(-) is the sign function and §; > 0 is an important parameter

controlling the neuron’s nonlinearity.

In this reasoning rule, the term Z,N: lwj;l < N represents an
upper bound for the neuron’s capacity [25], which is defined as the
sum of the absolute weights associated with the neuron’s incoming
connections. Therefore, it holds that |Adl(.’“)| <y IN= , lwj;l, which
provides a more realistic normalization than |4a'""|/N. The normal-
ization operation ensures that the neuron’s absolute values lie in the
[0, 1] interval and that it will reach its maximum absolute value when
|Aﬁl(.’+1)| = Z,’i | lw;;l, solving the saturation issues of mainstream
activation functions. After the normalization operation, we perform an
exponentiation step to either reduce or expand the neuron’s absolute
activation values, thus equipping the model with a tunable nonlinearity
component controlled by the g; parameter. Finally, we apply the sign
function on the neuron’s raw activation value (before the normalization
and exponentiation operations) to determine whether the concept’s
change is positive or negative.
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Fig. 5. Exponential normalized activation function.

Let us further discuss the role of the g, parameter on the proposed
exponential normalized function. Fig. 5 illustrates the behavior of the
proposed reasoning rule using the exponential normalized activation
function for a neural concept that receives information from 20 other
concepts. When g, = 1, the reasoning rule behaves linearly within
the [-20,20] interval. If §; > 1, the neuron’s input values contract in
comparison to the identity line. This configuration is recommended
for problems characterized by densely connected cognitive networks.
If 0 < p; < 1, the neuron’s input values dilate. This setup is advis-
able for problems described by sparsely connected cognitive networks.
However, the nonlinearity of each neural concept should be defined by
the domain experts based on the particularities of the problem being
modeled.

As a final step, we need a separate equation to map the changes
in the neural concepts computed by Eq. (1) to absolute values for the
problem variables that describe the system. Let X© = (xgo), ,xEO),
ey xgs)) denote a set of resources where x?o) gives the initial amount
of resources for the ith concept. For example, the initial amount of
resources associated with C; = “Predators” could be quantified as the
number of big cats observed in the area. We can compute the resource

vector X = (x(]’), ,xf.’), o xEV’)) in the rth iteration as follows:

x?H—l) - x?r) + Aal(.H—l)@}H—l) (8)

such that 95’“) represents the maximum amount of resources available
for the ith problem variable in the (+ + 1)-th iteration. Since our
simulation model is symmetric, it must be assumed that 01(.”]) will be
the maximum amount of resources to be earned or lost.

In this model, the amounts of resources can be zero, positive,
or even negative, and their interpretation depends on the problem
domain. As a general guideline, a zero value indicates that the available
resources in the previous iteration were fully consumed, while negative
and positive values signify a deficit or increase, respectively. For exam-
ple, a company may incur losses before achieving a positive balance, so
simulations could help determine whether the losses will persist over
an extended period or how much time the company would need to
generate profits. Caution is advised when interpreting negative values
since their meaning is problem-dependent.

4.3. Interpreting the observed dynamic behaviors

To address the third issue, we will introduce a flow diagram that
indicates how to interpret the simulation results based on the system’s
convergence status. Such a roadmap is based on the fact that FCMs can
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exhibit a spectrum of behaviors, ranging from stability to cycles and
chaos, each offering distinct interpretations.

Fig. 6 shows the proposed flow diagram that operates on the sim-
ulation trace for the ith neural concept, which is given by 4A; =
(Aaf.o), ,Aaf.’), e Aaf.T)). However, we often need to analyze all traces
simultaneously to have a holistic picture of the simulation.

When the model converges to an equilibrium point, we must in-
vestigate whether the fixed point is unique. In that case, the model
will not depend on the initial conditions since it will always converge
to the same final state regardless of the initial conditions. Therefore,
analyzing the effect of varying the initial conditions on the system’s
final state has limited usability. However, this does not mean the model
will always follow the same “path” to the unique fixed point [3,26].
Fig. 7 portrays a fictional example inspired by the case study in [27]
where the same concept is activated with different initial conditions. It
can be observed that both settings lead to the same output, but the first
setting Aal(.o) = 0.26 makes the model converge faster to the solution
when compared with the second setting Aago) = 0.16. The authors
in [27] suggested using this information for decision-making purposes,
although they did not provide a specific method.

In this paper, we propose a convergence-aware measure termed rate
of convergence that quantifies the deviation of the concept’s activation
values from the fixed point. It allows experts to analyze the effects of
different initial conditions on the system’s behavior, even when the
outcome remains the same. The rate of convergence measure can be
computed as formalized below:

T
Q4A) = Y |4df" - 4d"|. ©)
t=1

Notice that Eq. (6) converging to a unique fixed point does not
necessarily translate into Eq. (8) producing the same outcome for all
initial conditions, which aligns with the rationale of the proposed rate
of convergence metric. This behavior will be illustrated during the
empirical study conducted in the next section.

If the model governed by Eq. (6) converges to different fixed points,
we can conclude that the simulations depend on the initial conditions.
Aiming to interpret the results, we must inspect the model’s final
states. If Aaf.T) > 0, then the amounts of resources for the ith variable
(as computed using Eq. (8)) will increase permanently. This happens
because the model indicates that there will be constant changes in that
variable. The amounts of resources for the ith variable will decrease

permanently when AaET) < 0. In contrast, 4" = 0 indicates an

equilibrium point where the amounts of resourcles for the ith variable
will no longer change.

Another possible behavior is that the simulation model produces
cycles that depend on the initial conditions. However, cyclic patterns
in Eq. (6) might not translate into cycles in Eq. (8), which is an
appealing property of our methodology. If the cycle is positive (3¢t,, P €
{1,....(T =1} : Aa[(.’+P) = Aal(.'),Aaf.” > 0, V¢ > 1,), then the amounts of
resources for the ith problem variable will increase at uneven rates. If
the cycle is negative (3r,. P € {1,....(T - 1)} : 4a*" = 4a?, 2d" <,
Vvt > t,), then the amounts of resources for the ith problem variable will
decrease unevenly. If the states of the observed cycles have different
signs, then the amounts of resources will show cyclic patterns.

The last possible behavior is chaos. In these cases, we could con-
clude that the initial conditions and the weight matrix defining the
interaction between the concepts do not allow for consistent decision-
making. However, it might be the case that some initial conditions
cause more chaos than others, so we could resort to measuring the
standard deviation of the simulation trace 4A; to quantify the chaos
degree. The reader can notice that this measure follows a similar ratio-
nale as the rate of convergence metric in Eq. (9), where the hypothetical
convergence point is the mean of the simulation trace.
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Fig. 6. Flow diagram indicating how to interpret the simulation results and different convergence behaviors.
0.4 5. Numerical simulations
-@ 0aY=0.26
0.3 -O- Aa/9=0.16 In this section, we will conduct an empirical study using both real-
° world case studies and synthetically generated cognitive networks that
% 02 will help illustrate the superiority of the proposed methodology.
go.
[
= 5.1. Simulations using real-world case studies
201
o
In this section, we will compare our simulation model in Eq. (6)
0.0 with the model 44"V = f (Zj’i . Aa;”wj,-) using the real-world case

0 2 4 6 8
iteration number

10

Fig. 7. Convergence to a unique fixed-point attractor using Eq. (6) for two different
initial conditions.

studies and the activation functions discussed in Section 2. The sigmoid
function is excluded from our study because it does not allow for
negative changes in the concepts’ activation values. In all cases, we
will rely on Eq. (8) to compute the amounts of resources for the
problem variables. This empirical analysis is devoted to illustrating the
inner workings of our model under the influence of different activation
functions.

The first case study pertains to civil engineering and examines the
implications of urban development on public health within a city. This
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model was utilized in a prior study [28] to contrast the inference capa-
bilities across binary, trivalent, and sigmoid FCM models. The concepts
describing the system include city inhabitants (C,), migration inflows
(C,), urbanization (C;), waste generation (Cy), sanitation infrastructure
(Cs), the incidence of diseases per 1000 residents (Cg), and bacterial
density per area (C;). Fig. 8 visualizes this cognitive network, with
positive relationships denoted by solid lines and negative relationships
depicted by dashed lines.

The second case study used in our simulations, depicted in Fig. 9,
concerns the “crime and punishment” model, as outlined in [29]. It
depicts the interplay between various factors influencing crime and
the criminal justice system. The model incorporates concepts such as
the presence of property (C,), opportunity (C,), theft (C;), community
intervention (C,), criminal intention (Cs), punishment (Cg), and police
presence (C;).

Fig. 10 portrays the third case study, which concerns a complex
system representing the car industry, sourced from [30]. The neural
concepts describing this system include high profits (C,), customer
satisfaction (C,), high sales (C3), union raises (C,), safer cars (Cs),
foreign competition (Cg), and lower prices (C;).

The reader can notice that these FCM models involve non-trivial
pathways, even when they do not involve a large number of concepts
or causal relationships. Due to the lack of domain knowledge, we will
generate random values for the initial conditions (the initial changes
and the initial amounts of resources). Specifically, the initial changes
are randomly generated within the [0,1] interval, while the initial
amounts of resources are uniformly distributed within the [50,100]
interval. For reproducibility, we used the same Python seed in all
experiments. It is important to emphasize that these values define the
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Fig. 10. FCM modeling the “car industry” case study.

simulation being performed and should be determined by a domain
expert when applying the model.

Fig. 11 and Fig. 12 depict the change values and the amounts of re-
sources, respectively, for the “public health” case study. For simplicity,
we will visualize the results concerning the first four neural concepts. In
these simulations, we arbitrarily assumed that the maximal amounts of
resources are determined by the initial amounts of resources associated
with the variables describing the problem. This means the resources
earned or lost in a single iteration will not exceed the initial quantities.

The results reveal that the saturation, hyperbolic tangent, and ex-
ponential ( = 1.2) models lead to an equilibrium point where the
amounts of resources no longer change. The exponential (f = 1.0)
model exhibits slower convergence compared to the saturation, hyper-
bolic tangent, and exponential ( = 1.2) models, but it will produce
the same behavior if more iterations are performed. However, the fact
that these models display similar convergence behaviors does not imply
that they yield the same results, as indicated by the amounts of re-
sources. The reader might find it surprising that the hyperbolic tangent
model behaves similarly to the quasi-linear model (when using the
exponential function and # = 1.0, this activator behaves linearly within
the [- Z;V:l |1,vj‘-|,2;\'=1 |w;;|] interval). This behavior is explained in
Mpelogianni et al. [17], where the authors noted that raw activation
values with relatively small absolute values fall within a region where
the hyperbolic function resembles a linear activator. Fig. 13 shows this
phenomenon, where the gray area denotes the region containing the
neurons’ inputs for the randomly generated initial conditions.

The exponential model (f = 0.8) converges to a fixed point where
the final states of neurons are positive values. This suggests that the
quantities of resources produced by Eq. (8) will continue to increase
steadily. A similar pattern is observed with the rescaled activator,
which generates quasi-positive cycles (where most changes are posi-
tive). As a result, it produces occasional decreases in the amounts of
resources when the cycles transition through a negative state. Both
scenarios are elucidated in the diagram illustrated in Fig. 6, which
provides guidelines for interpreting the simulation results.

Fig. 14 and Fig. 15 depict the change values and the amounts
of resources, respectively, for the ‘crime and punishment case study.
Similarly to the previous case study, we visualize the simulation traces
concerning the first four concepts for the sake of simplicity.

The results indicate that the saturation, hyperbolic tangent, rescaled,
and exponential (f§ = 0.8) models produce cyclic patterns with the
amounts of resources ranging from 50 to 250. Although these cycles
involve both negative and positive states, no deficit in the resources
is observed after performing 20 iterations. In contrast, the exponential
models using # = 1.0 and g = 1.2 converge to a fixed-point attractor
where the concepts’ final states are zero. Therefore, the amounts of
resources no longer change, which means that the forces driving change
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exponential normalized activators).
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Fig. 13. Behavior of the quasi-linear and hyperbolic tangent activator for the “public
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are balanced. The hyperbolic tangent function will also exhibit this
behavior if more iterations are performed.

Fig. 16 and Fig. 17 show the change values and domain values
calculated using Egs. (6) and (8), respectively, for the “car industry”
case study.

For this case study, the saturation, hyperbolic tangent, rescaled, and
exponential (# = 0.8) models produce cycles containing negative and
positive states, with the amounts of resources varying from 100 to 400.
The exponential models with # = 1.0 and p = 1.2 converge to a fixed-
point attractor where no significant changes occur as more iterations
are performed, meaning the amounts of resources are balanced. No-
tice that the hyperbolic tangent and the quasi-linear models exhibit
different behaviors for this case study. This might be related to the
cognitive network being slightly denser than the previous ones, which
increases the neurons’ capacity. Therefore, the neurons’ inputs move in
a wider area, and thus, the hyperbolic tangent function might produce
less linear behaviors.

Overall, the empirical studies using these real-world case studies
indicate that different activation functions lead to models that might ex-
hibit distinct nonlinearities and behaviors, as highlighted in Section 3.
Domain experts should ideally define the system’s nonlinearity and the
time unit used in the simulation. If available, this information could
be extracted from historical data with little effort by investigating how
variables behave in time.

5.2. Simulations using synthetically generated data

The experiments using real-world case studies allowed us to illus-
trate the inner workings of the proposed simulation model and how to
interpret the results. Moreover, we exemplified how different activation
functions lead to different simulation models. However, these results
do not allow elucidating which function provides superior simulation
capabilities. In this section, we will conduct additional experiments
using synthetically generated data to empirically demonstrate the supe-
riority of the exponential normalized activator compared to the other
functions with respect to two desirable properties.

The first property concerns the absence of saturation states. As al-
ready explained, saturated neural concepts produce the same (minimal
or maximal) outputs when receiving significantly different inputs. Aim-
ing to investigate this behavior, let us start with a weight matrix where
w;; = —1 when i # j and w; = 0. Afterward, we will progressively
flip each weight in the matrix to w;; = 1 while computing the norm
of the final state vector. To illustrate the saturation issues, we will use
a matrix as small as the ones describing the real-world case studies.

Knowledge-Based Systems 299 (2024) 112089

The rationale of this experiment is to measure how many flipping
operations are necessary to escape from the saturation state before
reaching another saturation state.

Fig. 18 portrays the simulation results for T = 20 iterations and 20
random initial conditions. In this figure, the x-axis indicates how many
flipping operations are performed while the y-axis gives the normalized
norm of the state vector in the last iteration. The solid line represents
the average and the shadow visualizes the standard error statistic,
which is given by the standard deviation divided by the square root
of the sample size.

The results clearly show that the saturation and hyperbolic tangent
functions need about 15 flipping operations before escaping from the
saturation state while returning to that state promptly. In contrast,
the exponential models using f# = 0.8 and # = 1.0 do not saturate.
The exponential normalized activator using f§ = 1.2 and the rescaled
function do not saturate either, yet they cause the network to converge
to a unique fixed point.

The second desirable property concerns the system’s controllability,
as defined by the model’s convergence behavior. The saturation, the
hyperbolic tangent, and the rescaled activation functions carry the crux
of leading to models difficult to control. If no parameters are involved
in these functions, then the model’s convergence depends almost ex-
clusively on the weight matrix. Several studies [21,25,31-35] have
derived conditions related to the convergence of FCM-based models
that involve the weight matrix. On the one hand, if these conditions are
not fulfilled, then convergence cannot be ensured. On the other hand,
if the convergence behaviors do not meet the simulation requirements,
then we might be forced to change the weight matrix, which might
not be acceptable in some domains. In this regard, the exponential
normalized activator allows controlling the model’s convergence to
some extent through the p parameter.

Aiming to provide empirical evidence supporting the controllability
of the models using the exponential normalized activator, we will
generate a random weight matrix such that w;; € [~1, 1] when i # j and
w;; = 0 and 20 random initial conditions. Subsequently, we will perform
the reasoning process for T' = 20 iterations and measure the Euclidean
distance between the final state vectors for different g values (ranging
from 0.1 to 1.6 with a step of 0.1). The experiment aims to measure the
variability in the system’s responses under different parametric settings.
Fig. 19 displays the results where the shadow denotes the variability in
the distance values.

The results clearly indicate that the variability in the model’s re-
sponses decreases as the f value increases. We can notice that f > 1
leads to a unique fixed-point attractor since the distance between all
state vectors in the last iteration approaches zero. In contrast, § < 1
leads to system’s outputs that depend on the initial conditions, which
could represent multiple fixed points or unstable situations. Overall,
these findings generalize well the simulation results obtained for the
real-world case studies. In future research, we will attempt to prove
that these findings hold for any weight matrix.

6. Concluding remarks

In this paper, we have proposed a modeling and simulation method-
ology named “neural cognitive mapping”, resulting from a theory-
driven revision of the FCM formalism. By redefining concepts’ activa-
tion values in terms of changes, neural cognitive mapping aligns the
interpretation of causal weight with the activation values of neural con-
cepts. Moreover, the exponential normalized activation function equips
the domain experts with a flexible tool to define the system’s nonlin-
earity while preventing saturation states from happening. Finally, our
proposal enables clearer insights into the model’s dynamic behavior
through a systematic interpretation framework, thereby enhancing its
utility across various domains such as decision support systems and
policy analysis.
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Fig. 14. Change values outputted by the FCM modeling the “crime and punishment” case study when using different activation functions (saturation, hyperbolic tangent, rescaled,
and exponential normalized activators).
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The simulations conducted on various real-world case studies il-
lustrated the flexibility of the neural cognitive mapping methodology.
Comparisons among different activation functions revealed significant
differences in the convergence behaviors of the simulation models,
highlighting that an arbitrarily selected activation function is not suit-
able for all cases. This finding underscores the value of the proposed
normalized exponential activator, which allows the modeler to specify
the degree of nonlinearity, enabling the creation of simulation models
tailored to the system. Moreover, the alignment between the mathe-
matical simulation model and the physical system, combined with a
systematic framework for interpreting the simulation traces, introduces
an enhanced feature previously unaddressed in the FCM literature. This
framework enables mapping the simulation traces back to the prob-
lem domain in the presence of fixed-point attractors, cycles, or even
chaos. Simulations using synthetically generated data demonstrated

12

the effectiveness of the normalized exponential activator in avoiding
saturation states while allowing for substantial control over the model’s
convergence.

Despite the promising results, it is reasonable to believe that our
proposal needs to be tailored for specific case studies involving a paper
of domain experts able to validate the correctness of simulation results.
Moreover, being unaffected by saturation states opens new possibilities
for designing learning algorithms able to compute the weight matrix
from historical data, thus limiting the intervention of domain experts.
Finally, the empirical evidence showing the model’s convergence can
be regulated through the g parameter cries for a mathematical proof
generalizing these results for any weight matrix.
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