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Abstract

A general methodology is presented for non-parametric testing of independence, location and
dispersion in multiple regression. The proposed testing procedures are based on the concepts of
conditional distribution function, conditional quantile, and conditional shortest ¢-fraction. Tech-
niques involved come from empirical process and extreme-value theory. The asymptotic distri-
butions are standard Gumbel.

AMS classifications: 62G07; 62G10; 62G20

Keywords: Non-parametric regression; Empirical processes; Extreme-value theory

1. Introduction and main results

Let (X,Y), (Xi,11),...,(Xy, Yyy) be i.id. random vectors from a distribution f on
R, X; € RY, Y; € R (i =1,...,n). The marginal distribution of the X’s is denoted
by u; let S be the support of u. In this paper we are concerned with the conditional
distribution of ¥ given X = x, determined by (a version of) the conditional distribution
function (df) Fy. The corresponding conditional quantiles

O:(p) = inf{y: Fu(y)2 p}, pe(0,1)

can be used to describe the location of Y given X = x, as employed in median
regression. Dispersion characteristics will be measured by means of lengths of shortest
t-fractions (shortt); see e.g. Rousseeuw and Leroy (1988), Griibel (1988), and Einmahl
and Mason (1992). For any df G and any interval [¢,d] CR we use the notation
G([c,d]) for G(d) — G(c—). The conditional length of a shortt is now defined by

U(t) = inf{b — a : Fy([a, b])>t}, t€(0,1).

* Corresponding author. Tel: 32 1632 2789; Fax: 3216322999; e-mail: Jan.Beirlant@wis.kuleuven.ac.be.
! Research performed while the author was a research fellow at the Eindhoven University of Technology.
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It is our aim to provide new tests for independence, constant location, and homoscedas-
ticity through Fy,, O.(p) and U(r), respectively. More precisely, the following hy-
potheses will be considered for ¢ < p,t < 1 fixed:

e H{" : F, is independent of x € S (i a.e.);

° H?Z) : Ox(p) is independent of x € § (1 ae.);

. H?f) : Uy(t) is independent of x € S (u ae.).
Our statistical test procedures will be based on an appropriately chosen partition {4}, :
j=1,...,my} of S, with for convenience,

W= (A ) 2 A 0) = pjgr, forall 1<j<my, — 1
Empirical estimates of

Fiy)=P(Y<y | X€4;n)

Qi(p) == inf{y : Fi(y)= p},
and

Uit) :=inf{b —a: Fi([a, b]) =1}
are given by

i1y x(—00,1(Xis Y1)
ot Ly (X)) ’

Ojn(p) =inf{y : Fj.(y) 2 p},

Fj,n(y) =

and

Upu(t) :=inf{b —a: Fj;,([a, b]) =t}
Throughout we assume F; (j = 1,...,m,) to be continuous on R. Let y, denote the
empirical measure based on Xi,X;,...,X,, and set

Win = pin(Afn),  1<j<my,.

Note that the common values of Fy, O(p) under Hf)l), Hgf), respectively, are equal
to F,Q(p), the marginal df and pth quantile of the Y-distribution. Hence they are
appropriately estimated by F, and O,(p), with

n
Fu(0)=n""> T oop(Bs), yER,

i=1
On(p) =inf{y : Fu(y)> p}.

Concerning the hypothesis H{), observe that the common value of U,(t), denoted by
U.(¢), is not necessarily equal to the length of the marginal shortt of the Y-distribution
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(e.g., consider a degenerate bivariate (normal) distribution on the line y = x). We will
estimate U.(¢) by

M
Un(®) =Y tjnUn(1).
j=1
Now we are ready to state our main results. Let
Ax)y=exp(—e™), x€R,
be the standard Gumbel df, I' a rv with df A, and write

I = igﬂ% 12}*25"" \/”ﬂjm'F',n(J’) — Fu(p)|.

Theorem 1. If ny,, /((logn)?*logm,) — oo and pylogm, — 0 as n — oo, then we
have under H{" that

v/ 8logm, (I,, - \/%log(2m,,)> 4r.

Let ¢, be such that 1 — A(¢,}) = o, o € (0,1). Our asymptotic test for independence
can now be specified.

Corollary 1. The test which rejects Hgl) when

I3/} log(2m,) + ca/\/s log m,

has asymptotic significance level o if the assumptions of Theorem 1 are satisfied.

The following corollary can be applied when the X-distribution is known and contin-
uous.

Corollary 2. If m, — 00, i1 = lm,, and ny;/(logn)* — oo, then

\/810gm,, (ln -/ % lOg(2m11)> 'i) I

In the statement of our next result we make use of the following conditions:
(C.1) for some constant ¢; > 0,

limsup max sup fi{(y) < c
n—oo l1S/Smn yep

where f; denotes the derivative of Fj;
(C.2) the derivative f of F exists at Q(p) and satisfies f(Q(p)) > 0.
Furthermore, let

cun = v/21ogm, + (cy — L(loglogm, + logn)) /+/2 log m,.
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Theorem 2. Let p € (0,1) be fixed. The test which rejects Héz) when for some
Je{1,2,...,m}

[p(l - p) p(l—p)
Oa(p) ¢ {Qj,n (P’ Co,n '—n;;:“) ) Qj,n (p+cd," W ))

has asymptotic significance level o if (C.1) and (C.2) are satisfied and if ny, /((log n)*
log m,) — oo and p; logm, — Q.

In order to establish our last result some additional regularity conditions are required.
The first one reads as follows:

(C.3) for large n, every F; (1< <m,) has a density f; which is continuous on
R and has support (f;,y;), —00<f; < y;< 00, is strictly increasing on (f;, yo ;] and
strictly decreasing on [yg,j,7;) for some yg; € (f;,7;). Moreover, every f.,Xx € S,
satisfies this unimodality assumption.

Let £ € (0,1) be fixed. Under (C3) we have for large # that there exists a unique
interval [aj,;,b;,] (the shortt) such that F;([a;,b;.]) = t, fi(a;:) = fi(bj.), and
Si(y) > [fila;,) for every y € (a1, b;,) (1<j<my).

We also need that

(C.4) there exist constants ¢z,8; > 0 such that the derivatives fjl of f; satisfy

liminf min

1
inf ()| > e
n—oo  1<j<m, yelay by \lay +62, b,,,—52]| J l

Introducing the derivative u; of U; (1<j<m,) we assume
(C.5) there exist constants c3,cq4 > 0 such that for every s € (0,1)

limsup max |u;(s) — w;(¢t)| <csls — ¢,
n—oo 1Sj<my,

limsup max w;(¢t) < ca.
n—oa  1Kj<n,

Finally, we will assume

+
(C6) / logm,,]gl,a<x (Uj(t)~— sup Ux(t)) — 0.
sjsM,

,‘.‘EA/_,,

Theorem 3. Let ¢t € (0,1) be fixed The test which rejects Hg‘” when for some
Jje{1,2,...,my}

tHl—t Hl—t
Uj,n t—Cyn ( ) s ljj,n t+ Can ‘(”“_—)
L n nijn

has asymptotic significance level o if (C.1), (C.3)—(C.6) are satisfied and if u, log m,
— 0, i} (1 (log n)*(log m,)*/(npim, ) — 0.

Ua(t) ¢

For any x € §, let m;(x) be defined as the midpoint of the interval pertaining to
U(t). This robust regression curve is strongly related to the least median of squares
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regression estimator introduced in Rousseeuw (1984) (see also Rousseeuw and Leroy,
1988). The following smoothness conditions on m, and F, (x € §) can be used instead
of assumption (C.6), as shown by the following corollaries.

(C.7) for some constant ¢s > 0,

[mx1) ~ mx2)| <esllxr — xa|

for any x;,x2 €5}
. . ’ .
(C.8) the second-order derivatives f, of F, exist, and for some ¢¢ > 0,

sup sup |f(»)| < cs.
xe8 yeR

Let diam(4) := sup{||x; — x2]| : x;,x € A}, where ||x; — x,|| denotes the Euclidean

distance between x, and x;.

Corollary 3. The test which rejects Hg) when for some j € {1,2,...,my,}

O —
Uj,n t—cCyn ( ' t) N U}',n L+ Con t(l i t)
nilj n Nl n

has asymptotic significance level a if (C.1), (C.3)~(C.5), (C.7) and (C.8) are satisfied,
and if

Un(t) &

4
nyy log my, (lmax diam(A,;,,)) —0, wylogm, -0 and

<f<m,

8

y

W S w? | (log ny*(log ma Y /(nptm,) — 0.
j=1

Corollary 4. If m, — 00, 1 = lim,, nu/(logn)® — oo, and ny, logm, (Max;<;<m,
diam (4;,))* — 0, then it follows under (C.1), (C.3)~(C.5), (C.7) and (C.8) that the
test which rejects Hg” when for some j € {1,2,...,my}

Hl—1t Hl—1t
Uj,n t— Cyn ( ) ) Uj,n t+con ( )
Nl n Bl n

has asymptotic significance level u.

Ua(t) &

Remark. (1) The choice of Ox(p), resp. Uy(¢), rather than m,(x), resp. the interquar-
tile range Qx(%(l+t))—Qx(%(l—t)), to produce tests for Hf)z), resp. H§)3 ), was motivated
in part by considerations of statistical relevance. Indeed, m,(x) (x € 4;,) can only be
estimated at a rate of (n;)~"/3 (see e.g. Kim and Pollard, 1990), whereas interquartile
ranges have a lower breakdown point than the corresponding shortt measures when
t > —;— (see Rousseeuw and Leroy (1988) for the case ¢ = %). The techniques we
use to derive our results however, can also be applied to other testing procedures, e.g.
those based on m,(x) and interquartile ranges.
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(2) In the cases considered in Theorems 2 and 3, similar results on sup-norm statis-
tics where ¢, p vary over non-degenerate intervals can be obtained with the technique
of proof introduced in the next section.

(3) Our statistic /,, discussed in Theorem 1 is somewhat similar to the V-quantities
in Kiefer (1959) to test equality of distributions in a one-way layout of several popu-
lations (see also the references in that paper). The situation considered here provides
a generalization of Kiefer’s result to the case where the number of groups increases
with the sample size.

(4) Somewhat related papers are Bhattacharya and Gangopadhyay (1990), Stute
(1986) and Ruymgaart (1994).

(5) In a non-regression setting an analogue of our type of test statistics is the
goodness-of-fit test statistic in Dijkstra et al. (1984). In case S is compact, these au-
thors propose to reject uniformity on § when P, = max;;<m,/Mtj,» becomes too large,
where the partition is taken to be such that under the null hypothesis the y; are all
equal. Their simulation study shows that the power of this test is at least comparable
to the power of the classical y-test for uniformity against peaked alternatives.

A ‘continuous’ version of this ‘peak-test’ is given by the scan statistic (see e.g.
Naus, 1966, 1982; Cressie, 1980, 1987) which uses a maximal type statistic obtained
from continuous scanning of § with a fixed window. In case d = 1, Deheuvels and
Révész (1987) derived asymptotics for the scan statistic using a similar condition as
in Corollary 2; i.e. (nay)/(logn)® — oo, where a, is the window length.

When u; = up, one can also derive the following result for P,: if (nu;)/(logn)® —
oo and i) — 0, we have under the hypothesis of uniformity that

v/2 log m, {‘ /i’—(P,, — 1) —v/2logmy,
1
1
+§(10g log m, +10g47:)/(210gm,,)'/2} 4r

(6) The condition ny(logm,)(max;<;¢m, diam (4;,))* — O specifies to nApt?
log 1/, — 0 in case X possesses a uniform distribution on [0, 1]%, say, and the partition
is taken to be cubic with diam (4,.) ~ h, (j = 1,...,m,). This rate condition of 4,
lies close to the optimal rate of the window size in kernel density estimation when
minimizing the mean squared error.

(7) If one wants to restrict attention to a subset of the support S of X, all of our
results can still be used by translating them in terms of conditional distributions given
X belongs to that subset.

2. Proofs

The proofs of our main results rely on the following important proposition which
states that jointly over all elements A, of the partition of S, we can approximate the
different empirical processes

jn = \/nﬂj,n(Fj,n '_E/'): Jj=1L...,my,
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by independent Gaussian processes, and this, per j, at a rate which is comparable to
the one attained by the Komlés—Major-Tusnady (1975) approximation of the (one-
dimensional) uniform empirical process.
Denoting the joint distribution of (X, Y) by /i, and the empirical measure based on
(X1, 1),.... (X, Y,) by d,, we will use the following quantities:
A (y) = P(X € 4),, and Y< p) = U(Aj,n x (=00, ¥]),
ﬁj,n(y) - .an(Aj,ll X (.._oo’ y]):
so that
/1 ',n(y)
Fj,n(.V) ==
Hin

Proposition. [f m, — oo and (nuy,)/(logn)* — oo, then there exists a triangular
scheme of rowwise independent Brownian bridges {B;,(¢),0<t <1} (1</<my, n=1)
such that

logn
: —~ B, ,(F; =0 )
i‘éﬁ 1 gjixm"laj.n(y) . (Fj () p( W)

Proof. We consider the transformation from § x R to [0, 1]

iy

j—1
(6,9) = T y) = D 14, (%) [Z#k + wFi(y)
f k=1

j=1

2

and the transformed rv’s
Zi=T(X,Y), i=12,...,n

One easily checks that Z,2,,...,Z, are independent uniformly (0,1) distributed rv’s.
Let {e,(),0<¢< 1} denote the empirical process based on Z;, Zs,...,Z,. The approx-
imation theorem of Komlés et al. (1975) entails then the existence of a sequence of
Brownian bridges {B,(¢),0<¢<1} such that as n — oo

~ logn>
sup |e,(t) - B,(t)| =0 .
0sr21|"() n(t)] P<\/r—l
Setting T(A;n X (—00,]) = {T(xv) : x € 4;,0<y}, y € RU {oo}, we have
MT(Ajn x (=00, ¥])) = u;F;(y), with 1 denoting Lebesgue measure; also for a closed,
half-open, or open interval 4 with endpoints a<<h we set B,(4) := B,(b) — Bu(a).

It now follows that

~ 1
max I\/H(,uj,n — 1) = Bu(T (A, % (—00, o0)]))| = Op ( (th-n>

Igjsmy,

and that

. 1
max 5 [V ()~ Bj00) = BT (4 (00,51 = O ( ‘fﬁ”) .

Isjsm, o
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Now uniformly in j € {l,...,m,} and y € R we have

1,00 ()
8() =\/—“nm.n(”’ w4 ,y>
Hjn H

= Vi, (¥) = BN B = Vg = ) (VR )

| -
- {{ W(T(Aj % (~ oo,y])>+op(fgf")}uj v
{B (T(Ajn X (—00,00])) +Op (“if;)}F( )u“”} P

where

13 logn
Tjn = Auj,n/!uj =1+ n_llz.uj an(T(Aj,n X (—00,00])) +ﬂj lOP ( g > . (2.1)

We can define a sequence of Wiener processes {W,(¢),0<¢< 1} such that B, = W, —
IW,(1), where / denotes the identity function. Hence, we find that

4.0() = { [F(T (g X (=00, 1)) — Fy(2)Wu( T(Ay X (—00, 00}t 2

We now set
Bjn(Fi(¥)) = 1] PA{Wa(T (.0 X (00, Y1) = Fi(y)Wn(T(dyn X (=00, 00]))}.

One easily checks that the B;, are indeed independent in j € {1,2,...,m,} and dis-
tributed as Brownian bridges.
Now as 1 — 0

- —1j2 — 1
54) = BisFSOD] < B0 (57 = 1) 4757300 (2.

For a function ¢ on [0,1], write |||l = sup,,<, [¢(¢)]. First remark that as the F; are
assumed to be continuous:

max, sup 1Bj.n(Fi(»)] =  ax I1Bj,all = Or(+/logmy),

l<j<m,,

as, because of the independence of the rv’s ||B; || (1< <m,), we have for any M > 0,
that

P( max ”Bj,,,” > M\/logm,,) <2m, C—-ZMZlogm,, =2m,1,‘2M2,

1<jsm,

which tends to zero as m, — co when M > 272, (Here we also used the fact that
for a Brownian bridge B we have P(||B| > u)<2e“2“2,)
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b (£ 0]

gn—l/ZM;'llﬂ max (Ilfl/z

I<j<m,

= (it ) " Op(+/log my,),

since W,,((Zk 1 ks Z{;l,uk])/\/ij (1<€j<m,) are m, independent standard normal

rv’s whose maximum is well known to be of order Op(y/logm,) as n — 0.
Hence,

logn  logn
g logn 22
lg}ix ITJ n | P (\/; + Ry, > ( )

Furthermore,

12 max u7'|B
1 Sj<m,,

n

[T !W(l)l)

and
_ logn  (logn)*/?
B; u(F; 2_4| = ,
Jax, sup [Bin(F ] g™~ 11 = Or T ) )

Finally, with

_ logn logn

172 _

(s ™ or () =00 (222 )
the result follows, O

Proof of Theorem 1. First remark that by the well-known fact that

Vn sup [Fu(y) = F(y)| =0p(1) (n— o0),
yER

we have

Vlogm, sup | max, VAl 1Fa(3) — F()| = (u logm,)'20p(1)  (n — 00)

<j<ma

since, as in the proof of the proposition we find that uniformly in j € {1,...,m,}

logm
12 _ 1/2 gmy
- (v (522))

Hence, since uj logm, — 0, it suffices to show that, under H,

v/ 8 log my, (sup lmax vV 1l n |Fj,n(3) - F(y)| - \/ % log(zm,,)) I

<j<my

(n — o0).
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Under HY" it now follows from the proposition that
Sup max ./nij, IF',n(}’) ~F(y)| —sup max |Bj,n(Fj(y))l |
yeR yeR 1<j<mn

v/ 8logm,
I<j<my,

— Op log n+/log m, = o(1)
\/n:umu P

if n— oo and npy, /((log n)? logm,) — oo.
Finally, remark that by the independence of the ||B;,| (1<j<m,) we can apply
standard extreme value theory to show that

1% 810gmn {12}%” "B,n” Y} %10g(2mn)} 'g) r (23)

since P(||B; || > u) ~ 22 (see Resnick, 1987, Proposition 1,19), O

Proof of Corollary 2. If y) = s = -+ = 1, then m, = ul“l.
The condition g, logm, — 0 is then automatically satisfied when m, — co. O
Proof of Theorem 2. Observe that, under HE)Z),

. [a=p) p1-p)
P(Qn(p) g l:QJ-" (‘D Coun nWjn ) ’ QJ’" (p + Can Rt a )) ’

for some j € {1,...,m,}) -« asn— oo

if

\/210gmn{  max. (\/’Wj.n (Fjn @ P)) = pl v/ P(1 = p)) - /2logm,
+%(log logm, + log 7)(2 Iogm,,)"'/z} 4r 2.4

Indeed, for any df G on the real line and any p € (0,1) we have
G(x)=p if and only if G (p)<x

and hence
G(x) < p if and only if G~ '(p) > x.

We first show that under (C.1), (C.2), nu,, /((logn)? logm,) — oo and u; logm, — 0

v 2logmy, {lgljzgs""v”/“LJ',11|Fj.n(Qn(p)) - pl - lg}?g&ﬂ IBL"(FJ'(Q"(p)))I} L 0
2.5
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where {Bj .} (1<j<m,,n>1) is the sequence of Brownian bridges described in the
Proposition. Now (2.5) follows from the Proposition if we can show that under our
assumptions

Viogmy max /A [Fi(Qu(p)) = pl = 0. (26)
The well-known central limit theorem for quantiles yields that under Hf)z ) and (C2)
On(P) = Q(P) + Op(n™ ') = Q;(p) + Op(n™'?)
when # — oco. Hence, by the mean value theorem we have under ng) that
Fi(Qn(p)) = Fj(@s(p) +Op(n™2)) = p+ Op(n™'?) £ Q; ()

with 0, ,(p) € (Ou(p) A Qi(p), Ou(p)V Qi(p)) (1<, <m,). Hence, by (C.1) and
under Hf,z),

Vi, max (F{(0,(p) ~ pl = Op(1) (n— o), @7
so that it remains to check that (logm,)(max; <;<m, M) Lo (n — o0) for (2.6) (and

hence (2.5)) to hold.
However, using ;,, in (2.1) again, we get that

logmn( max ﬂj,n) <pi(logm,) (1 max rj,n>,

I<j<my, <ji<my

which tends to zero in probability as n — oo and g log m, — O because of (2.2).
Next, it follows from (2.7), and the modulus of continuity behaviour of Brownian
bridges (see e.g. Csorgd and Révész, 1981, Lemma 1.1.1) that

Viogm, max | 1B,(FQu(p)))) = |Bi(p)] | = Opln™"*((log n)log my))")

=op(1) (n— o). (2.8)

As B o(p) (1 <j<m,) are independent .47(0, p(1 — p)) rv’s, standard techniques form
extreme value theory yield that

VZiogm, {(p(1—p)™" max |B;(p)| ~ v/Zlogm,

+1(log log m, +log 7) - (2 1ogm,,)*‘/2} ST (my—o0).  (29)
Limit statement (2.4) now follows from (2.5), (2.8) and (2.9). O

Proof of Theorem 3. We introduce the functions

Hi(z) = sup{Fy([a, b]) : b — a<z).
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Note that H; is the inverse of U; (for n large enough). The derivative of H; is
denoted by h;. Remark that condition (C.1) implies

limsup max sup h;(z) < oo, (2.10)
n—oo 1€j€mn 250

as for each j € {1,...,m,} we find that h; is non-increasing and h;(0) = max,er fi(y).
Analogously, we define the inverse function H;, of U;, by

H;u(z) = inf{z : Uj ()22}
and note that
Hj u(z) = sup{F([a, b]) : b —a<z}, 1<j<m,.

To prove Theorem 3 it now suffices to show that under Hg”
sup  max |/ a(Hja(Un(t)) —t) — B} a(t)]
t€(0,1) 1 SJj<mn
= Op((njtm, )~ (log my)""*(log n)'"?) (2.11)
for some triangular scheme of rowwise independent Brownian bridges {B;,}(1 <

<my,nz1); cf. the proof of Theorem 2. We derive (2.11) in three steps by showing
that under the given conditions

sup  max |\/mfa (Hyn(Uj(t)) = 1) = Bja(0)|

1€(0,1) 1</<mn

= Op((ntim, )~} (log m,,)"* (log n)'72), (2.12)
Viegm,  max /Al [Hy(Ua(t)) = 1|0 (2.13)

and
/logm,  max Bjn (HAUA()) = Bia(t)] 0 (n — oo). (2.14)

First, we prove the existence of a sequence {B;,} of Brownian bridges for which
(2.12) holds. Remark that from the Proposition it follows that

logn

sup max (ol 51) — (Bya(F(8)) - Bya(Fi(@)))| =op(

la,b] 1Si<m,

) (2.15)

My

as B ,([Fj(a),Fj(b)]) = Bj n(Fjn(b)) — Bj n(F}n(a)). To derive (2.12) from (2.15) we
apply and refine the method of proof of Proposition 3.1 .in Einmahl and Mason (1992).
We define

Bjw(t) = Bju(Fi(bj)) — Bin(Fias))y 1</ <my.

As~ the intervals [a;,,,b;] are nested for different values of ¢, one easily checks that
the B, are distributed as Brownian bridges for every j & {1,2,...,m,} and large n;
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moreover, ﬁl,,,,...,ﬁ,,,” are clearly independent. Notice that for any j € {1,...,m,}
and 0 <t <1

Bjn(t) = N/ (Hyn(U(0) = )< (B n(Fi(bj1)) — Bjn(Fi(a;0)))
—0,n([a),1, 0j ) (2.16)

which, by (2.15), is seen to be Op(logn/,/Hiiy, ), uniformly in j € {1,...,m,}.
Next, we also have for any j € {1,...,m,} and any sequence &, | 0

Vntuj,n(['[j.n(Uj(t)) - t) - E',n(t)

< { VPl Sup (Fjn([a, B]) — ) — Bju(t)
—~ag I-(l)
1—z,.<Fj([a,b])sn

V{\/”.uj.n sup (Fj,n([avb])"t)-éj,n(t)}- (2.17)

Fi([a,b]) <t—&y
The second term on the right-hand side of (2.17) is

<Algn sup  (Fya(la, b)) — Fi([a, b])) + |Bj.a(t)] — &ar/lim
Fi([a,b]) <t

<2 max sup |B;([c,d])|
[e.d]

lstM,.
+ max sup 19, 1) — (Bjn(F;(8)) — Byn(Fj(@))| — & | min /At .
From (2.3), (2.15) and (2.2) it now follows that the second term on the right-
hand side of (2.17) can be asymptotically bounded from above by 0 in probability, by
making the appropriate choice

&, = M(log mn/("ﬂm,. ))1/2

with M a large enough positive constant.
The first term on the right-hand side of (2.17) is

<Vl sup  ((Fja(b) = Fju(a)) — (Fy(b) — Fy(a))) — B, n(t)
b—ain(I)
l—e,,<Fj([a,b])s1

<, S loy.n(la, b]) — (Bj.n(Fj(b)) — Bj,a(Fi(a)))|
1= m<Fytla b <t

+ sup (Bjn(Fj(b)) — Bj,a(F(a))) = Bjn(2). (2.18)
t—e,.lli([a,b])&l

The first term on the right-hand side of (2.18) is of order Op(log n/,/AfL,,), uniformly
in j € {1,2,...,my}, by (2.15).
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Finally, observe that for any j € {1,....mn}

sup {Bjn(Fj(b)) - Bj,n(Fj(a))} - Z}j,n(t)
f: ::g(('[:. st

< max sup  {|Byn(Fi(b)) — Bju(Fy(b)))]
€ j<my p—astytn
1—c,,<!~'j([u.b])<1

+ [Bju(F(@)) = Bja(Fiaj )} (2.19)
For any interval [a, b] with b—a = Uj(¢) and ¢ —&, < Fy([a, B])<t, we find by (C.4)
that (uniformly in f) |a — a;,| and |b — by} become arbitrarily small as n — co. We

then find, with &, as in (C.4), that eventually as n — oo whether a € [a;,a;,: + 81)
or b €[bj,—02,b;] Incase a < ap < yo; < b < bj,, we have that

Fi(lb, by )< by = Bl fi(yo, ) scr(bye — b).
On the other hand, if &, =F;([a;. b;,:]) — F;(la, b]) =0, then

en 2 Fy([b, by 1) — (b — D) fi(bye) = =((bje — bY/2) 1} (Bj.)
with 5/-,, € (b;,1Ab,bj,Vb), so that (C.4) implies that for n large enough F;(b;,)—F;(b)
<Cey*, for some C > 0. Also in the other possible cases we can obtain this same
bound for |F;(b;,)~F;(b)} V |Fj(a;,)—Fj(a)|. Hence the expression on the right-hand

side of (2.19) can be bounded by

w(n,e,) =2 max sup sup  |Bju(s+ 1) — Bju(s)]. (2.20)
VS 0 gs<1-C /R 0<I<CE

By Lemma 1.1.1 in Csorgd and Révész (1981), the representation of Brownian bridges
in terms of Wiener processes, and the independence of the Brownian bridges B;,, (1 <
J<my), we obtain that for any K > 0 there exist constants K;,K, > 0 such that
P(e(n,&,) > Kyn) <Kimue, ' exp(—KaK 267 12).
Choosing
vn = &, *(logn)"? = M"*(log my ) (num, )~ ¥ (log n)'2,
one easily checks that

P(w(n,e,) > Ky,) =0 (n— 00)

choosing K > 0 large enough. This together with (2.16)~(2.20) implies (2.12).
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To derive (2.13), note that under Hff) we have for any j € {l,...,m,}
II_[j(Uvn(t)) - tl
< HUa(t)) = H{U)] + HAUA8)) = Hi(U0))]

< |Un(0)) = U@)| Bi(Uu()) + |U(t) =~ Ui(#)] h(Tj(t), (2.21)

where U,(t) € (U (t) AU(t), Un(t)V U(t)) and Ui(t) € (Ui(t) ANUL(t), Ult)v
U-(t))’ 1<j<m,.

Now using (2.2) and (2.10), and the fact that under Hﬁf) from (C.6) and U(¢)= U.(t)
it follows that

Vapy logm, max |U;(t) = U(t)] =0 (n— o0), (2.22)
1<j<my
we now find that as n# — oo

Viogm, max (/A [U-(5) = UAO] ay(U;(1)

=Op (\/nm logmy max |U;(1) = U.(0) ) = op(1). (2.23)
On the other hand, by (2.2) and (2.10), as n — o0

Vlogm, max (VA (T,(t))) |Un(t) — U.(2))]

= Op(1)v/nuy logmy, |Ua(t) — U.(t)|. (2.24)
Furthermore,
|Un(t) = U] <3 gl Us(t) = UO] + | ia(Upn(t) = Up())|. (2.25)
j=1 j=1
Now

my

Vi Togm, Y g |Uj(0) = Ut)| </mpuTogm, max |U)(1) = U0)
=1 "
(2.26)

which tends to zero by (2.22).
The mean value theorem yields that for some 7}, € (H;(Uja(t))At, Hi(U;u(t))V1)

Zl‘/-" (Upnlt) = Ui = _tjn (Ui(HIUpa(0))) = Uy (1))
J=1 j=1
=S "t w @) HUj(0)) = 1). 227)

j=1
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We now show that in this last expression we can replace u;,,u;(Zjn) by \/Hui(t)\/Hin-
To this end we first remark that using (2.2) and (2.12) we have as n — oo that

max  sup |[Hi(U;.(¢))—¢ = max sup [H;a(Uy(2)) — ¢

I<jsm 1) I<j<m 10,1

= (nptn, )™ max 1B +op((numn)‘”‘*(logmn)"*‘(lognf”)

= Op((npm, )™ (logm,)'? + (pum,)™® (log m,)'/® (logn)'/?)
= OP(("ﬂmn )—]/z(log m")l/Z)- (2-28)

A similar argument yields that

max Vi sup [H(Ujn(0) =1 = Ox((logm)'™) (n—c0).  (229)

1<jgm,
Using (C.5) we obtain that
iuj(zj,n) - uj(t)l e |t~j,n - t’ <¢3 max |f{j(ljj,n(t)) - tl
lsj<my
= Op((nptm, )~ " (log my)'?) (n — 00).

Hence, with (2.29) and the rate condition in the statement of the theorem we have that

M

Vnp logm, Zﬂj,n | (#,n) — ui ()] |1HHUjn(2)) — ¢
j=1

My

= Op()*(ntm, )™ logma) > " w)/2/Am |H(Uju(t)) — 1))

J=1

= Op | (log m, Y (nitm, )~V pil? Z“Jl/'?
=
= op(1) (n— o). 230

Next, using (C.5), (2.29), and max; <;<m, ]ujl/,% l/2| = Op((logn)2n="2) (n — )
we find

/np log m, Z#”z(u,”f Y (OHUpn(t)) ~ 1)

Jj=1
logmy logn |
= Op (\/ ﬁ’-gn—g—~) S w0 |G HA U () — £)]
J=1
= Op (logm,,u’w’z m,,)
n
I m
= Op [ logmy [EE2 5™ | (1 o0), 231)

J=1
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which is op(1) as n — oo because of the rate conditions in the statement of the
theorem.
From (2.27), (2.30) and (2.31) it now remains to show that

V K1 IOg my

20 (2.32)

> w P ui ()R HUj(0) = 1)
j=1

as n — oo in order to verify (2.13).
To this end, as |H;,(U;.(¢)) — ¢ <(np;n)~" as., the expression on the left-hand
side of (2.32) is equal to

v/ log my,

mpy 1 }
+op( ,u}/2> */“—";‘ﬁ’t-g-’ﬂ (n — 00). (2.33)
= mn

Now, by (2.11),

V i1 log my

Z/ljl/zuj(t)\/n—ﬂj,—n(HI(U’"(t)) - Hj,n(ljj,n(t))
Jj=1

S (O H (U1 = H,-,,,(U,-,,.m»l

J=1

= /1y logmy,

Zu}/zuj(t)gj,n(Hj( UJ’"(t)))‘

J=t

+0p (u}” (Zu}“) (numn)“/‘*(logmn)sfs(logn)‘/z) : (2.34)
J=1

Using the modulus of continuity behaviour of Brownian bridges together with (2.27),
we get

Z,u}-/zuj(l)ﬁj,n(}[j(U:f,n(t)))

J=1

v i1 log my

My
= logm,| > u(6)B;(2)
J=1

+0p (y}” (Zy}“) (nttm, )~ (log n)(log m,,>3/4) : (2.35)
j=1

Observe that because of the independence of the B;, we have that

n

Z#}/zuj(t )Ej,n(t) ~ N (0’ t(l - I)Zuju}(l‘)> '
j=! =
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With (C.5)
(1= 1)) ity =0(1) (n— 00)
Jj=1
and hence
Vilogm, > uut)B; ()20 (n— co). (2.36)
j=1

Statements (2.33)—(2.36) yield (2.32), and (2.13) follows from (2.21)-(2.27) and

(2.30)-(2.32). .
Finally, statement (2.14) follows by (2.13), the behav1ou£ of the modulus of con-
tinuity of Brownian bridges, and the independence of the B), (/ = 1,...,m,). This

conciudes the proof of Theorem 3. [

Proof of Corollary 3. It suffices to show that, under Hg”, /g log my max| < <m, (U;
(6)-U.(t)) — 0 (n — o0) is implied by (C.7), (C.8) and the rate ny; log m,(max<;<m,
diam (4;,,))* — 0 (n — ). N

Let K, = [a,,b:] denote the shortt pertaining to Fy, let o; = inf xed;, Qxs [fj- =
Sup,cy ,bx, and set

By =y + U(t), & = B; — U.(t).

Let a be such that ¢; <a < a+U.(t)</§j. A Taylor expansion, using fy(a.) = fx(byx)
and (C.8), yields that for some d, € (ax Aa, a;Va) and by € (by A(a+ U(2)), by V
(a+ U.(2))) we have

t = Fe(la,a+ U(D)]) = (Fe(a) — Fe(ay)) — (Fela + U.(£)) = Fy(by))
= La - ax) f(@) — La + U(t) — b2 fo(by)
NACTEE N
and hence,

t—Fila,a+U@)])< 1 gljﬁgnn(aj — &;Ycs = vn.

Set y = (Uj(1) — U(t))/vn. Since U;(t)=U.(t), we have n=20. Observe that for y, €
(&), B;] and y, <o or p, Zﬁj we have fi(y1)= f(y:). Hence, it readily follows that
[d), B;] C K. This means that we can find an @ as above such that K; =[a—nv,a+
U.(#)} or such that K; = [a,a + U.(¢) + yv,].

Without loss of generality assume the first equality holds. Observe that the second
condition in (C.5) implies that

liminf min inf : > 1/eq.
o0 1gj<m, yE[aj,,,bj',]f)(y) / 4
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Hence,
0=t-Fi(la—nvu, a+U@D<v, — Fi([a — vp,a]) <va(l = n/ca),

which (when v, > 0) implies #<¢s. This, in combination with v,+/nu; log m,
— 0 (n— oo), completes the proof. [J
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