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We study the incoherency problem of the indirect translog demand system in which nonnegativity 
constraints on all goods are explicitly taken into account. Two examples illustrate the nature of 
the problem: The set of constraints which are binding is not always uniquely defined, and thus the 
model may not have a reduced form. We derive sufficient conditions for coherency which are 
related to regularity properties of the demand system; these conditions appear to be ‘almost 
necessary’ for regularity. 

1. Introduction 

During the past few years, several authors have studied the problem of 
estimating systems of demand equations if a significant proportion of the 
observations in the sample contains zero expenditures on one or more goods. 
Wales and Woodland (1983) formulate a model based on the Kuhn-Tucker 
approach, which is consistent with utility-maximizing behaviour and allows for 
random preferences. In case an explicit specification of the direct utility 
function is available, this approach seems very natural and intuitively ap- 
pealing. 

The individual is assumed to solve the problem 

maxG(x;ti,u) s.t. urx<l and ~20. 
Y 

Here x is a K-dimensional vector of quantities, u is a K-dimensional vector of 
normalized prices (u, = pi/M, i = 1,. . . , K, where p, is the price of good i and 
M is income), G is the (direct) utility function, depending on a vector 8 of 
parameters (to be estimated) and a vector u of random variables (to allow for 
preference variation between individuals). 

Ransom (1987) comments on the relationship between the Wales and 
Woodland model and the ‘simultaneous equation’ Tobit model of Amemiya 
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(1974) for the special case of a quadratic utility function. He also discusses, for 
this special case, the issue of internal consistency, i.e., the question whether 

there is a one-to-one correspondence between all possible realizations of the 
random variables (except, perhaps, for those in a set of probability zero) and 
all possible quantity vectors x that could be observed (alternatively stated: do 
the probabilities sum to one?). In the literature, this property is also called 
coherency of the model [see, e.g., Gourieroux et al. (1980)]. Ransom finds that 
internal consistency is guaranteed if the (quadratic) direct utility function is 
strictly concave on the set of feasible quantities {x; x 2 O}. This result is no 
surprise, since. if the utility function is strictly concave, (1) is an example of 
maximizing a strictly concave function over a (nonempty) compact convex set 
and standard Kuhn-Tucker theory assures us that this problem has one and 
only one solution. 

Lee and Pitt (1986) propose to use duality theory and shadow prices in the 
Wales and Woodland model to be able to deal with more flexible demand 
systems for which no explicit specification of the direct utility function can be 
given. In particular, they pay attention to the indirect translog system [see 
Christensen, Jorgenson, and Lau (1975)]. Lee and Pitt do not address the 
issues of well-behaving of the indirect or direct utility function or internal 
consistency. In an earlier paper [Van Soest and Kooreman (1986)], we showed 
with a simple example in the three-goods case, that internal consistency can be 
severely violated for certain values of parameters of the indirect translog 
specification (which do not guarantee concavity of the direct utility function in 
a large enough region). In this paper we show that, provided that the 
parameters satisfy certain conditions, internal consistency is guaranteed and, 
moreover, that the direct utility function behaves well in the feasible region of 
the quantity-space, {x; U’X I 1 and x 2 0). 

2. The framework 

We start from the indirect utility function 

ff(P, M) = f “;1OdP*/~~ + i I? f P,,log(Pi/M)log(P,/M), 
1=1 ;=l J=l 

where p = (pl,. . ., pK)T is a vector of prices, M denotes income, (Y = 
((Ye,. . . , (11~)~ is a parameter vector, which is normalized such that cf=,a; = - 1 
[a may include a random component, as in Lee and Pitt (1986)], and 
B = (p,,)~,_, is a matrix of parameters. Without loss of generality, we assume 
that B is symmetric. 
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Introducing a vector u =P/M of normalized prices, the indirect utility 
function can be written as 

H(u) = i: a, log 0, + : 2 5 p,, log u, log u,. 
I=1 r=l j=l 

Note that 

aH 
- = 1 - 5 f p,, log u, M. 
aM i ,=l /=1 II 

Since the indirect utility function must be increasing as a function of M, a 
necessary condition for the use of this specification in the neighbourhood of a 
given vector 0 is 

D*(u) =I - i: i: p,,1ogu;>o. (2) 
,=, ,=I ’ . 

Application of Roy’s identity yields 
equations 

sI*(u) =z;(u)/D*(u), 

where 

K 

z,*(u) = -a,- c PJogu,, 

/=1 

the notional (uncompensated) demand 

i= l,..., K. 

Here s*(u) = (sT( u), . . . , sz( u))~ is the vector of optimal budget shares, some 
of which may be negative. We write z*(u) = (zp( u), . . . , z~(u))~. 

3. Rationing 

In the following, we consider a fixed vector u and we derive the optimal 
shares s, that satisfy s, 20 (i= l,..., K). With s=(si ,..., sK)r this can be 
written as s 2 0. 

Using the Kuhn-Tucker conditions, as in Lee and Pitt (1986) (and thus 
implicitly assuming, that the direct utility function ‘behaves well in some large 
enough region’), the maximization problem can be written as: 
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Find a vector m=(rr,,..., ?rK)r of normalized shadow prices and a vector 
s=(sr,..., s,)rof (optimal) shares such that 

s, = r z,*+ I? P,,(loguj-log~,,) 
/=1 I 

D* + f ; ,8&&‘~,-log1r,) i=l,..., K, 
j=l k=l 

and 

s 2 0, nsv, syu-7r)=O. 

With y, = log ui - log r,, j = 1,. . . , K, y = (yl,. . . , y,)‘, and e = (1,. . . , l)T, 
this can be written as: 

Find a vector y satisfying 

y 2 0, 

(z* +By)/(D* +y’Be) 20, (3) 

yT(z* +By) =o 

[The corresponding shares are then given by s = {z* + By}/{ D* + y’Be}.] 

The problem of internal consistency is illustrated by the following two 
examples with three commodities. 

Example I. Let 

and u= (l,l,l)r. 

Fig. 1 depicts the number of solutions of (3), for each realization of the vector 

&J = (a,, a29 - 1 - (or - (u2)r of random variables. Each solution is character- 
ized by some regime, i.e., a subset of { 1,2,3} indicating which constraints are 
binding. 
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Q =-20: 2 1 =2 

2 sol.: 

t1.21 

and 

2 solutions: 

\\ 

I21 

(11 snd (21 

2 solutions: 

{1.3) and 12.31 _1 

2 solutions: 

{1.31.{3) 

2 sol.: 

Il.21 

-/ 

t21 

no solutions 

3 

M solutions 

.l 

\ lo sol. 4=0 

Fig. 1. E.wmple I: an incoherent demand system. The number of solutions and the corresponding 
regimes for each (al. a*, - 1 - al - a*)‘. 

For example, regime (2) yields the system 

Y, = 0, 

y3=0, 

( - a2 + 4y,)/( 1 + 6~2) = 0, 

y, ’ 0, 

(q+ 2~,)/0 + 6~2) ’ 0, 

-a,/(1 + 6y2) > 0. 

And this system yields a solution iff (Ye < 0, cy2 > 0, and cy2 > 2a,. Fig. 1 
indicates for each vector cy those regimes that yield a solution. For (Y with 
q > 0 and a2 < 2a,, no solution is found, and for other cr’s (except for some 
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set of probability zero) there are two solutions. For none of the (Y’S there is 
exactly one solution, so coherency is severely violated. 

Example 2. Let 

2 1 0 
B= 1 2 0 

( 1 

and U= (l,l,l)T. 
0 0 1 

The regions in a-space for which solutions for the different regimes exist are 
given in fig. 2. In this case, for each (Y, system (3) yields exactly one solution 
and the model is internally consistent. 

The following proposition gives sufficient conditions for internal consistency 
of the model. It is easily proved using the notation introduced to describe 
system (3). 

1 solution: 

(2) 

1 solution: 

1 solution: {3} 

012=2a 1 

1 sol.: 

I21 

1 

1 solution: 

/zL=; 

1 solution: {l} 

1 

\ 
sol.: 

I.31 0: =o 
3 

Fig. 2. Example _‘: a coherent demand system. The number of solutions and the corresponding 
regimes for each (al. az, - 1 - aI - CY*)~. 
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Proposition I. Assume 

(Al) B is positive dejinite, 
(A2) D* > 0, 

(A3) Be> 0, 

Then the problem given by (3) has one and only one solution for all K-dimen- 

sional vectors (Y. 

Proof. D* > 0 and Be 2 0 imply that D* + y rBe > 0 for all y 2 0. This 
means, that (3) can be rewritten as: 

Find a vector y satisfying 

y20, 

z* + By r 0, (4) 

y’( z* + By) = 0. 

This problem is known in the literature as the linear complementarity problem 
[cf. Amemiya (1974) or Eaves (1971)]. It has one unique solution if all 
principal minors of B are positive. Since B is symmetric, this means that B 
must be positive definite. n 

Assumptions (A2) and (A3) are necessary to guarantee 

D*(V) = D* + yrBe > 0, 

for all vectors of shadow prices v corresponding to all feasible vectors of 
shares s 2 0. As stated in (2), D*(m) > 0 is a necessary condition for good 
behaviour of the indirect utility function, and therefore assumptions (A2) and 
(A3) seem quite reasonable. 

Assumption (Al) arises in a similar way, if we consider concavity of the 
corresponding cost function. 

4. Concavity in the feasible region of the shares space 

The cost function is only well-behaving in the neighbourhood of a vector 7~ 
of shadow prices corresponding to a given vector s of shares, if the matrix of 
second-order partial derivatives of the cost function with respect to prices is 
negative semidefinite. This condition is equivalent to the requirement that the 
matrix of Allen-Uzawa elasticities of substitution be negative semidefinite, 
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which, in case of the translog function, means that the matrix 

C(s) = -A(s) +.ssr- (D* +y%e)-’ 

must be negative semidefinite [see, e.g., Barnett et al. (1985)]. Here A(s) 

denotes the diagonal matrix with si (i = 1,. . . , K) on the diagonal and y 
corresponds to s, i.e., ~1, = log u, - log rj, where rr = (a,, . . . , rK)T is the vector 
of shadow prices corresponding to the vector s of shares. 

Proposition 2. Assume 

(Al) B is positive definite, 

(AZ) D* > 0, 

(‘43) Be 2 0. 

Then concavity holds for the optimal vector of shares, i.e., the vector s > 0 
corresponding to the solution of (3). 

Proof. The proof is an immediate consequence of the following two lemmas. 

Lemma 1. If s 2 0 and s1 + . . +s, = 1, then A(s) - ssT is positive semi- 

definite. 

Lemma 2. If B is positive dejnite, then B-s(B~)~- BesT+ eTBessT is 

positive semidejnite for all s. 

Proof of Lemma 1. ’ Without loss of generality we may assume s, > 0 (i = 
1 ,..., K ). We must prove 

F(X) := x’{ A(s) - ss’}x 2 0 for all vectors x. 

Using standard Lagrange technique, it is easy to show that on the ellipsoid 

K 
x= (XI,...,XK)T; s,x; 1 c .=) 

J=l 

the minimum value attained by F equals zero (and the maximum is one). Since 
F(Ax) = X2F(x) for all real X, this implies that F(x) 2 0 for all vectors x. n 

‘A more general version of this lemma is proved in Bekker (1986, p. 69) 
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Proof of Lemma 2. Let x be any K-dimensional nonzero vector. Then 

xT(B-s(Be)T- BesT+ eTBessT)x 

= xTBx - 2(xTs)(xTBe) + (xTs)‘eTBe. 

This is a quadratic function of x’s, with discriminant 

D=4((xTBe)‘- (xTBx)(eTBe)). 

If B is positive definite, then D I 0 (Cauchy-Schwarz), so the function does 
not change sign and, because xTBx > 0, it is always nonnegative. W 

5. Conclusion 

Proposition 1 can intuitively be seen as a consequence of Proposition 2: 
Concavity of the cost function corresponds to concavity of the direct utility 
function on the feasible region S = {s; s 2 0 and sTe 5 l}. Since S is convex, 
the concave direct utility function attains a unique maximum on S. 

The main problem left seems to be the question whether the assumptions 
(Al), (A2), and (A3) in Propositions 1 and 2 are necessary. If they are not, 
imposition of them might destroy the second-order flexibility of the indirect 
translog specification. It is easy to see, that concavity at all vertices 

(0,. . ., 0, l,O, . . . , O)T of the feasible region S implies, together with assump- 
tions (A2) and (A3), that all principal (K - 1) X (K - 1) submatrices of B 
must be positive definite. This means that, if observations in the neighborhood 
of all these vertices exist, the assumptions do not seem to strong. But what can 
be left out if, for instance, there is one commodity with a positive share for 
everyone, as often happens in practice? 

Finally, note that assumptions (Al), (A2), and (A3) do not say anything 
about (Y. Hence if the assumptions are met the (Y,‘s may vary randomly and no 
truncation of their distribution is necessary to assure that probabilities add up 
to one. Random variation of the LY,‘s implies that all feasible vectors of shares 
could be optimal, and thus makes the assumptions (Al), (A2), and (A3) 
‘almost necessary’. 
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