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1 Introduction

Log-linear analysis has become a widely used method for the analysis of
multivariate frequency tables obtained by cross- classifying sets of nominal,
ordinal, or discrete interval level variables. Examples of textbooks discussing
categorical data analysis by means of log-linear models are [4], [2], [14], [15],
[16], and [27].

We start by introducing the standard hierarchical log-linear modelling
framework. Then, attention is paid to more advanced types of log-linear
models that make it possible to impose interesting restrictions on the model
parameters, for example, restrictions for ordinal variables. Subsequently, we
present “regression-analytic”, ”path-analytic”, and “factor-analytic” variants
of log-linear analysis. The last section discusses parameter estimation by
maximum likelihood, testing, and software for log-linear analysis.

2 Hierarchical log-linear models

2.1 Saturated models

Suppose we have a frequency table formed by three categorical variables
which are denoted by A, B, and C, with indices a, b, and ¢. The number of
categories of A, B, and C' is denoted by A*, B*, and C*, respectively. Let
mape be the expected frequency for the cell belonging to category a of A, b of
B, and c of C'. The saturated log-linear model for the three-way table ABC'
is given by

logMape = A+ AT+ AT AT+ AP 02 009+ 02590 (1)
It should be noted that the log transformation of mg,. is tractable because
it restricts the expected frequencies to remain within the admissible range.



The consequence of specifying a linear model for the log of mg,. is that a
multiplicative model is obtained for mg., i.e.,

mare = exp (A+ A+ A+ A+ 207 + A0+ AZC + 259
A_B_C_AB_AC_BC_ABC

= TTa Ty Tc Tab Tac Toe Tabe - <2>
From Equations 1 and 2, it can be seen that the saturated model contains
all interactions terms among A, B, and C. That is, no a priori restrictions
are imposed on the data. However, Equations 1 and 2 contain too many
parameters to be identifiable. Given the values for the expected frequencies
Mape, there is not a unique solution for the A and 7 parameters. Therefore,
constraints must be imposed on the log-linear parameters to make them

identifiable. One option is to use ANOVA-like constraints, namely,
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This parameterization in which every set of parameters sums to zero over
each of its subscripts is called effect coding. In effect coding, the A term
denotes the grand mean of logmg.. The one-variable parameters A2, A2,
and \¢ indicate the relative number of cases at the various levels of A, B,
and C' as deviations from the mean. More precisely, they describe the partial
skewness of a variable, that is, the skewness within the combined categories
of the other variables. The two-variable interaction terms AAP, A\A¢ and
MY indicate the strength of the partial association between A and B, A and
C, and B and C, respectively. The partial association can be interpreted
as the mean association between two variables within the levels of the third
variable. And finally, the three-factor interaction parameters \;2¢ indicate
how much the conditional two-variable interactions differ from one another
within the categories of the third variable.

Another method to identify the log-linear parameters involves fixing the
parameters to zero for one category of A, B, and C, respectively. This pa-
rameterization, which is called dummy coding, is often used in regression
models with nominal regressors. Although the expected frequencies under

both parameterizations are equal, the interpretation of the parameters is



rather different. When effect coding is used, the parameters must be inter-
preted in terms of deviations from the mean, while under dummy coding,
they must interpreted in terms of deviations from the reference category.

2.2 Non-saturated models

As mentioned above, in a saturated log-linear model, all possible interaction
terms are present. In other words, no a priori restrictions are imposed on the
model parameters apart from the identifying restrictions. However, in most
applications, the aim is to specify and test more parsimonious models, that
is, models in which some a priori restrictions are imposed on the parameters.
Log-linear models in which the parameters are restricted in some way are
called non-saturated models. There are different kinds of restrictions that can
be imposed on the log-linear parameters. One particular type of restriction
leads to the family of hierarchical log-linear models. These are models in
which the log-linear parameters are fixed to zero in such a way that when
a particular interaction term is fixed to zero, all higher-order interaction
terms containing all its indices as a subset must also be fixed to zero. For
example, if the partial association between A and B (M\AP) is assumed not
to be present, the three-variable interaction AAZ¢ must be fixed to zero as
well. Applying this latter restriction to Equation 1 results in the following
non-saturated hierarchical log-linear model:

logMape = A+ AP H N+ 0 +N2C L \BC (3)

Another example of a non-saturated hierarchical log-linear model is the
(trivariate) independence model

log Mape = A+ A+ A+ 00,

Hierarchical log-linear models are the most popular log-linear models be-
cause, in most applications, it is not meaningful to include higher-order
interaction terms without including the lower-order interaction terms con-
cerned. Another reason is that it is relatively easy to estimate the parameters
of hierarchical log-linear models because of the existence of simple minimal
sufficient statistics (see maximum likelihood estimation).



3 Other types of log-linear models

3.1 General log-linear model

So far, attention has been paid to only one special type of log-linear models,
the hierarchical log-linear models. As demonstrated, hierarchical log-linear
models are based on one particular type of restriction on the log-linear param-
eters. But, when the goal is to construct models which are as parsimonious as
possible, the use of hierarchical log-linear models is not always appropriate.
To be able to impose other kinds of linear restrictions on the parameters, it
is necessary to use more general kinds of log-linear models.

As shown by McCullagh and Nelder [23], log-linear models can also be
defined in a much more general way by viewing them as a special case of
the generalized linear modelling (GLM) family. In its most general form, a
log-linear model can be defined as

logm; = Z)\jxija (4)
J

where m; denotes a cell entry, )\; a log-linear parameter, and z;; an element
of the design matrix. The design matrix provides us with a very flexible tool
for specifying log-linear models with various restrictions on the parameters.
For detailed discussions on the use of design matrices in log-linear analysis,
see, for example, [10], [14], [15], and [25].

Let us first suppose we want to specify the design matrix for an hierarchi-
callog-linear model of the form { AB, BC'}. Assume that A*, B*, and C*, the
number of categories of A, B, and C, are equal to 3, 3, and 4, respectively.
Because in that case model {AB, BC'} has 18 independent parameters to be
estimated, the design matrix will consist of 18 columns: 1 column for the
main effect \, 7 ([A* — 1] + [B* — 1] + [C* — 1]) columns for the one-variable
terms A2, AP, and \S, and 10 ([A* — 1] % [B* — 1] + [B* — 1] % [C* — 1])
columns for the two-variable terms A4 and AZC. The exact values of the
cells of the design matrix, the x;;, depend on the restrictions which are im-
posed to identify the parameters. Suppose, for instance, that column j refers
to the one-variable term A\ and that the highest level of A, A* is used as
the (arbitrary) omitted category. In effect coding, the element of the design
matrix corresponding to the ith cell, z;;, will equal 1 if A =a, -1if A = A,
and otherwise 0. On the other hand, in dummy coding, z;; would be 1 if
A = a, and otherwise 0. The columns of the design matrix referring to the
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two-variable interaction terms can be obtained by multiplying the columns
for the one-variable terms for the variables concerned (see [10] and [14]).

The design matrix can also be used to specify all kinds of non-hierarchi-
cal and non-standard models. Actually, by means of the design matrix, three
kinds of linear restrictions can be imposed on the log-linear parameters: a
parameter can be fixed to zero, specified to be equal to another parameter,
and specified to be in a fixed ratio to another parameter.

The first kind of restriction, fizing to zero, is accomplished by deleting the
column of the design matrix referring to the effect concerned. Note that, in
contrast to hierarchical log-linear models, parameters can be fixed to be equal
to zero without the necessity of deleting the higher-order effects containing
the same indices as a subset.

FEquating parameters is likewise very simple. Equality restrictions are
imposed by adding up the columns of the design matrix which belong to the
effects which are assumed to be equal. Suppose, for instance, that we want
to specify a model with a symmetric association between the variables A and
B! each having three categories. This implies that

NP o= N
The design matrix for the unrestricted effect A4 contains four columns,
one for each of the parameters M2, AAB AAB A4B. In terms of these four
parameters, the symmetric association between A and B implies that A\
is assumed to be equal to A{®. This can be accomplished by summing the
columns of the design matrix referring to these two effects.

As already mentioned above, parameters can also be restricted to be
in a fixed ratio to each other. This is especially useful when the variables
concerned can be assumed to be measured on an ordinal or interval level
scale, with known scores for the different categories. Suppose, for instance,
that we wish to restrict the one-variable effect of variable A to be linear.
Assume that the categories scores of A, denoted by a, are equidistant, that
is, that they take on the values 1, 2, and 3. Retaining the effect coding
scheme, a linear effect of A is obtained by

M= (a—a)\t.

'Log-linear models with symmetric interaction terms may be used for various pui-
poses. In longitudinal research, they may be applied to test the assumption of marginal
homogeneity (see [3] and [16]). Other applications of log-linear models with symmetric as-
sociation parameters are Rasch models for dichotomous (see [24] and [17]) and polytomous
items (see [4]).



Here, a denotes the mean of the category scores of A, which in this case is
2. Moreover, \* denotes the single parameter describing the one-variable
term for A. It can be seen that the distance between the A/ parameters
of adjacent categories of A is A*. In terms of the design matrix, such a
specification implies that instead of including A* — 1 columns for the one-
variable term for A, one column with scores (a — a) has to be included.

These kinds of linear constraints can also be imposed on the bivariate
association parameters of a log-linear model. The best known examples are
linear-by-linear interaction terms and row- or column-effect models (see [5],
(7], [13], and [15]). When specifying a linear-by-linear interaction term, it
is assumed that the scores of the categories of both variables are known.
Assuming equidistant scores for the categories of the variables A and B and
retaining the effect coding scheme, the linear-by-linear interaction between
A and B is given by

MNP = (a—a)b—b)\'E. (5)

Using this specification, which is sometimes also called uniform association,
the (partial) association between A and B is described by a single parameter
instead of using (A* — 1)(B* — 1) independent A\A? parameters. As a result,
the design matrix contains only one column for the interaction between A
and B consisting of the scores (a — a)(b — b).

A row association structure is obtained by assuming the column variable
to be linear. When A is the row variable, it is defined as

M= -

Note that for every value of A, there is a A/'® parameter. Actually, there
are (A* — 1) independent row parameters. Therefore, the design matrix will
contain (A* — 1) columns which are based on the scores (b—b). The column
association model is, in fact, identical to the row association model, only the
roles of the column and row variable change.

3.2 Log-rate model

The general log-linear model discussed in the previous section can be ex-
tended to include an additional component, viz., a cell weight ([14] and [19]).
The log-linear model with cell weights is given by

my
lOg (Z> = Z /\jxij
v J
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which can also written as
log m; = log Zi + Z )\jxij s
J

m; = z,-ea:p(Zijij),
J

where the z; are the fixed a priori cell weights. Sometimes the vector with
elements log z; is also called the offset matrix.

The specification of a z; for every cell of the contingency table has several
applications. One of its possible uses is in the specification Poisson regres-
sion models that take into account the population size or the length of the
observation period. This leads to what is called a log-rate model, a model for
rates instead of frequency counts ([14] and [6]). A rate is a number of events
divided by the size of the population exposed to the risk of having the event.

The weight vector can also be used for taking into account sampling or
nonresponse weights, in which case the z; are equated to the inverse of the
sampling weights ([3] and [6]). Another use is the inclusion of fized effects in
a log-linear model. This can be accomplished by adding the values of the A
parameters which attain fixed values to the corresponding log z;’s. The last
application I will mention is in the analysis of tables with structural zeros,
sometimes also called incomplete tables ([15]). This simply involves setting
the z; = 0 for the structurally zero cells.

3.3 Log-multiplicative model

The log-linear model is one of the GLMs, that is, it is a linear model for
the logs of the cell counts in a frequency table. However, extensions of the
standard log-linear model have been proposed which imply the inclusion of
non-linear terms, the best known example being the log-multiplicative row-
column (RC) association models developed by Goodman [13] and Clogg [5]
(see also [7]). These RC association models differ from the association models
discussed in section 3.1 in that the row and column scores are not a priori
fixed, but are treated as unknown parameters which have to be estimated as
well. More precisely, a linear-by-linear association is assumed between two
variables, given the unknown column and row scores.

Suppose we have a model for a three-way frequency table ABC' containing
log-multiplicative terms for the relationships between A and B and B and



C. This gives the following log-multiplicative model:
log Mape = +X; + Ay + A+ pg PP it? + 1y P 7 (6)

The ¢ parameters describe the strength of the association between the vari-
ables concerned. The u’s are the unknown scores for the categories of the
variables concerned. As in standard log-linear models, identifying restric-
tions have to be imposed on the parameters p. One possible set of identify-
ing restrictions on the log-multiplicative parameters which was also used by
Goodman [13] is:

Za:uz?B - Xb:u‘é‘B - Xb:u{fc = Zc:ufo =0
Z(ué‘B)Q = Z(M?B)2 = Z(ufc)z = Z(MCBC)Q = 1.

a b b c

This gives row and column scores with a mean of zero and a sum of squares
of one.

On the basis of the model described in Equation 6, both more restricted
models and less restricted models can be obtained. One possible restriction is
to assume the row and column scores within a particular partial association
to be equal, for instance, pAP equal to p;'? for all a equal to b. Of course,
this presupposes that the number of rows equals the number of columns.
Such a restriction is often used in the analysis of mobility tables ([22]). It is
also possible to assume that the scores for a particular variable are equal for
different partial associations ([5]), for example, ui'? = uPC. Less restricted
models may allow for different p and/or ¢ parameters within the levels of
some other variable ([5]), for example, different values of p22, B, or ¢pB
within levels of C'. To test whether the strength of the association between
the variables father’s occupation and son’s occupation changes linearly with
time, Luijkx [22] specified models in which the ¢ parameters are a linear
function of time.

As mentioned above, the RC association models assume a linear-by-linear
interaction in which the row and column scores are unknown. Xie [31] demon-
strated that the basic principle behind Goodman’s RC association models,
i.e., linearly restricting log-linear parameters with unknown scores for the lin-
ear terms, can be applied to any kind of log-linear parameter. He proposed
a general class of log-multiplicative models in which higher-order interaction
terms can be specified in a parsimonious way.
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4 Regression-, path-, and factor-analytic mod-
els

4.1 Log-linear regression analysis: the logit model

In the log-linear models discussed so far, the relationships between the cat-
egorical variables are modelled without making a priori assumptions about
their ‘causal’ ordering: no distinction is made between dependent and inde-
pendent variables. However, one is often interested in predicting the value
of a categorical response variable by means of explanatory variables. The
logit model is such a ‘regression analytic’ model for a categorical dependent
variable.

Suppose we have a response variable denoted by C and two categorical
explanatory variables denoted by A and B. Moreover, assume that both A
and B influence C, but that their effect is equal within levels of the other
variable. In other words, it is assumed that there is no interaction between
A and B with respect to their effect on C'. This gives the following logistic
model for the conditional probability of C' given A and B, m¢jq:

oxp (A€ 4 1 2°)
Seexp (AC + ALY + M)

When the response variable C' is dichotomous, the logit can also be written

as
10g < T'1|ab ) _ 10g <7T1|ab>
1- T1|ab T2|ab
= (AT = 29) + (N = A8 + (6 = A0)
= B+ 45

It should be noted that the logistic form of the model guarantees that the
probabilities remain in the admissible interval between 0 and 1.

It has been shown that a logit model is equivalent to a log-linear model
which not only includes the same A terms, but also the effects corresponding
to the marginal distribution of the independent variables ([3], [11], [14]).
For example, the logit model described in Equation 7 is equivalent to the
following log-linear model

(7)

Tclab

logmape = abe + )xf + )\:1400 + Af;c , (8)
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Figure 1: Modified path model

where

In other words, it equals log-linear model {AB, AC, BC'} for the frequency
table with expected counts mg,.. With polytomous response variables, the
log-linear or logit model of the form given in Equation 8 is sometimes referred
to as a multinomial response model. As shown by Haberman [15], in its most
general form, the multinomial response model may be written as

logmix = ar+ Y AjTijk, (9)
J

where k is used as the index for the joint distribution of the independent
variables and ¢ as an index for the response variable.

4.2 Log-linear path analysis

After presenting a “regression analytic” extension, we will now discuss a
“path-analytic” extension of log-linear analysis introduced by Goodman [12].
As is shown below, his “modified path analysis approach” that makes it
possible to take into account information on the causal and/or time ordering
between the variables involves specificating a series of logit models.
Suppose we want to investigate the causal relationships between six cat-
egorical variables denoted by A, B, C, D, E, and F. Figure 1 shows the
assumed causal ordering and relationships between these variables, where a
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pointed arrow indicates that variables are directly related to each other, and
a ‘knot’ that there is a higher order interaction. The variables A, B, and C
are exogenous variables. This means that neither their mutual causal order
nor their mutual relationships are specified. The other variables are endoge-
nous variables, where F is assumed to be posterior to D, and F' is assumed
to be posterior to E. From Figure 1, it can be seen that D is assumed to
depend on A and on the interaction of B and C'. Moreover, E is assumed to
depend on A, B, and D, and F on B, C, D, and F.

Let 7gefjape denote the probability that D = d, E = e, and F' = f, given
A =a, B =05, and C' = ¢. The information on the causal ordering of the
endogenous variables is used to decompose this probability into a product of
marginal conditional probabilities ([12] and [30]). In this case, Tgefjape can
also be written as

Tdeflabc = Td|abc Te|abed T flabede - (1())

This is a straightforward way to indicate that the value on a particular vari-
able can only depend on the preceding variables and not on the posterior
ones. For instance, F is assumed to depend only on the preceding variables
A, B, C, and D, but not on the posterior variable F'. Therefore, the proba-
bility that £ = e depends only on the values of A, B, C', and D, and not on
the value of F.

Decomposing the joint probability mgefjase into a set of marginal condi-
tional probabilities is only the first step in describing the causal relationships
between the variables under study. In fact, the model given in Equation 10
is still a saturated model in which it is assumed that a particular dependent
variable depends on all its posterior variables, including all the higher-order
interaction terms. A more parsimonious specification is obtained by using a
log-linear or logit parameterization for the conditional probabilities appear-
ing in Equation 10 ([12]). While only simple hierarchical log-linear models
will be here used, the results presented apply to other kinds of log-linear
models as well, including the log-multiplicative models discussed in section
3.3.

A system of logit models consistent with the path model depicted in Fig-
ure 1 leads to the following parameterization of the conditional probabilities
appearing in Equation 10:

exp (AP + NP + AEP + XSP + AEGP)
Saexp (A2 + Ao + MGP + AP+ AE5P)

Td|abc
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exp ()\f + AAF + N\BE 4 )\fl)eE)
e exp (A + ARF + AZF +AZP)
exp (AF + MBF + AGF + ADF + AEF)
Srexp (AF + M + AT+ ARF + A5
As can be seen, variable D depends on A, B, and C, and there is a three-
variable interaction between B, C, and D; E depends on A, B, and D,

but there are no higher-order interactions between E and the independent
variables; and F' depends on B, C', D, and E.

Te|abed

T f|abede

4.3 Log-linear factor analysis: the latent class model

As many concepts in the social sciences are difficult or impossible to measure
directly, several directly observable variables, or indicators, are often used
as indirect measures of the concept to be measured. The values of the indi-
cators are assumed to be determined only by the unobservable value of the
underlying variable of interest and by measurement error. In latent structure
models, this principle is implemented statistically by assuming probabilistic
relationships between latent and manifest variables and by the assumption
of local independence. Local independence means that the indicators are
assumed to be independent of each other given a particular value of the un-
observed or latent variable; in other words, they are only correlated because
of their common cause.

Latent structure models can be classified according to the measurement
level of the latent variable(s) and the measurement level of the manifest
variables. When both the latent and observed variables are categorical one
obtains a model called latent class model. As shown by Haberman [15], the
latent class model be can defined as a log-linear model with one or more
unobserved variables, yielding a “factor-analytic” variant of the log-linear
model.

Suppose there is, as depicted in Figure 2, a latent class model with one
latent variable W with index w and 4 indicators A, B, C, and D with
indices a, b, ¢, and d. Moreover, let W* denote the number of latent classes.

This latent class model is a equivalent to the hierarchical log-linear model
{WA,WB,WC, WD}, that is,

108 Muaped = A+ AV XL AB L0 £ 2D
F AVA L AWE L AW L AVD (11)
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Figure 2: Latent class model

In addition to the overall mean and the one-variable terms, it contains only
the two-variable associations between the latent variable W and the manifest
variables. As none of the interactions between the manifest variables are in-
cluded, it can be seen that they are assumed to be conditionally independent
of each other given W.

In its classical parameterization proposed by Lazarsfeld [21], the latent
class model is defined as

Twabed = TwTa|w Tb|lw Tejw Tdjw - (12>

It can be seen that again the observed variables A, B, C, and D are pos-
tulated to be mutually independent given a particular score on the latent
variable W. Note that this is in fact a log-linear path model in which one
variable is unobserved. The relation between the conditional probabilities ap-
pearing in Equation 12 and the log-linear parameters appearing in Equations
11 is

exp ()\aA + )\TVXIA)

alw — . 13
Tale = S A A (13)

5 Estimation, testing, and software

5.1 Maximum likelihood estimation

Maximum likelihood (ML) estimates for the expected frequencies of a spe-
cific log-linear model are most easily derived assuming a Poisson sampling
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scheme, but the same estimates are obtained with a multinomial or product-
multinomial sampling scheme. Denoting an observed frequency in a three-
way table by ng., the relevant part of the Poisson log-likelihood function
is

IOg L = Z (nabc 1Og Mape — mabc) ) (14>

abc

where the expected frequencies mg,. are a function of the unknown A param-
eters.

Suppose we want to find ML estimates for the parameters of the hier-
archical log-linear model described in Equation 3. Substituting Equation 3
into Equation 14 and collapsing the cells containing the same A\ parameter,
yields the following log-likelihood function:

10g L = Ny A+ D Nars AL+ D nap Af + 2 ny Al
a b [

+ Z nab+)‘:14bB + Z n+bc/\bB;C

ab be
= > exp (ut+ AL+ A+ AT+ 257 + 80, (15)
abc

where a + is used as a subscript to denote that the observed frequencies have
to be collapsed over the dimension concerned. It can now be seen that the
observed marginals 1y, Ngrt, Nypr, Note, Napr, and Ny contain all the
information needed to estimate the unknown parameters. Because knowledge
of the bivariate marginals AB and BC implies knowledge of ny 4, ngio,
Nypr, and ny ., Ngpr and nyye are called the minimal sufficient statistics, the
minimal information needed for estimating the log-linear parameters of the
model of interest.

In hierarchical log-linear models, the minimal sufficient statistics are al-
ways the marginals corresponding to the interaction terms of the highest
order. For this reason, hierarchical log-linear models are mostly denoted by
their minimal sufficient statistics. The model given in Equation 3 may then
be denoted as {AB, BC}, the independence model as {A, B,C}, and the
saturated model as {ABC'}.

When no closed form expression exists for mq,., ML estimates for the ex-
pected cell counts can be found by means of the iterative proportional fitting
algorithm (IPF) [8]. Let m(%)c denote the estimated expected frequencies after
the vth IPF iteration. Before starting the first iteration, arbitrary starting
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values are needed for the log-linear parameters that are in the model. In most
computer programs based on the IPF algorithm, the iterations are started
with all the A\ parameters equal to zero, in other words, with all estimated
expected frequencies mg?,)c equal to 1. For the model in Equation 3, every
IPF iteration consists of the following two steps:

~ (v) ~ (v—=1) Tab+
Mape = Mgpe ~ (v—1)
ab+
A~ W)~ (v) Tpbe
abc T abe . (v)'
mpe

where the ) and ) denote the improved estimated expected frequencies
after imposing the ML related restrictions. The log-linear parameters are
easily computed from the estimated expected frequencies.

Finding ML estimates for the parameters of other types of log-linear
models is a bit more complicated than for the hierarchical log-linear model
because the sufficient statistics are no longer equal to particular observed
marginals. Most program solve this problem using a Newton-Raphson al-
gorithm. An alternative to the Newton-Raphson algorithm is the uni-di-
mensional Newton algorithm. It differs from the multi-dimensional Newton
algorithm in that it adjusts only one parameter at a time instead of adjust-
ing them all simultaneously. In that sense, it resembles IPF. Goodman [13]
proposed using the uni-dimensional Newton algorithm for the estimation of
log-multiplicative models.

For ML estimation of latent class models, one can make use of an IPF-like
algorithm called the Expectation-Maximization (EM) algorithm, a Newton-
Raphson algorithm, or a combination of these.

5.2 Model selection

The goodness of fit of a postulated log-linear model can be assessed by com-
paring the observed frequencies, n, with the estimated expected frequencies,
m. For this purpose, usually two chi-square statistics are used: the likelihood-
ratio statistic and the Pearson statistic. For a three-way table, the Pearson
chi-square statistic equals



and the likelihood-ratio chi-square statistic is

L = 2 nae 1og<7f“”c) . (16)

abe Mabe

The number of degrees of freedom for a particular model is
df = number of cells — number of independent u parameters.

Both chi-square statistics have asymptotic, or large sample, chi-square dis-
tributions when the postulated model is true. In the case of small sample
sizes and sparse tables, the chi-square approximation will generally be poor.
Koehler [18] showed that X? is valid with smaller sample sizes and sparser ta-
bles than L? and that the distribution of L? is usually poor when the sample
size divided by the number of cells is less than 5. Therefore, when sparse ta-
bles are analyzed, it is best to use both chi-square statistics together. When
X? and L? have almost the same value, it is more likely that both chi-square
approximations are good. Otherwise, at least one of the two approximations
is poor.?

The likelihood-ratio chi-square statistic is actually a conditional test for
the significance of the difference in the value of the log-likelihood function
for two nested models. Two models are nested when the restricted model
has to be obtained by only linearly restricting some parameters of the un-
restricted model. Thus, the likelihood-ratio statistic can be used to test the
significance of the additional free parameters in the unrestricted model, given
that the unrestricted model is true in the population. Assuming multinomial
sampling, L? can be written more generally as

L?T‘u) = (—2 log E(T)) — (—2 log E(u))
2 Nape lOg ﬁabc(u) — 2 Nape lOg ﬁabc(r)

= 2N log (W) ,

Mabe(r)

where the subscript (u) refers to the unrestricted model and the subscript
(r) to the restricted model. Note that in Equation 16, a particular model

2 An alternative approach is based estimating the sampling distributions of the statistics
concerned rather than using their asymptotic distributions. This can be done by bootstrap
methods (Langeheine, Pannekoek, and Van de Pol, 1996). These computationally intensive
methods are becoming more and more applicable as computers become faster.
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is tested against the completely unrestricted model, the saturated model.
Therefore, in Equation 16, the estimated expected frequency in the numer-
ator is the observed frequency ng.. The L%T‘u) statistic has a large sample
chi-square distribution if the restricted model is approximately true. The
approximation of the chi-square distribution may be good for conditional L?
tests between non-saturated models even if the test against the saturated
model is problematic, as in sparse tables. The number of degrees of freedom
in conditional tests equals the number of parameters which are fixed in the
restricted model compared to the unrestricted model. The L%T‘u) statistic can

also be computed from the unconditional L? values of two nested models,
2 _ 72 2
Loy = Loy = L
with
dfery = dfey — dfw) -

Another approach to model selection is based on information theory. The
aim is not to detect the true model but the model that provides the most
information about the real world. The best known information criteria are
the Akaike [1] information criterion (AIC') and the Schwarz [26] or Bayesian
information criterion (BIC'). These two measures, which can be used to
compare both nested and non-nested models, are usually defined as

AIC = L[*—2df. (17)
BIC = L?>—logNdf. (18)

5.3 Software

Software for log-linear analysis is readily available. Major statistical pack-
ages such as SAS and SPSS have modules for log-linear analysis that can
be used for estimating hierarchical and general log-linear models, log-rate
models, and logit models. Special software is required for estimating log-
multiplicative models, log-linear path models, and latent class models. The
command language based £EM program developed by Vermunt [27][28] can
deal with any of the models discussed in this article, as well as combinations
of these. Vermunt and Magidson’s [29] Windows based Latent GOLD can
deal with certain types of log-linear models, logit models, and latent class
models, as well as combinations of logit and latent class models.
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6 An application

Consider the four-way cross-tabulation presented in Table 1 containing data
taken from four annual waves (1977-1980) of the National Youth Survey
[9]. The table reports information on marijuana use of 237 respondents who
were age 14 in 1977. The variable of interest is an ordinal variable measuring
marijuana use in the past year. It has the three levels “never” (1), “no more
than once a month” (2), and “more than once a month” (3). We will denote
these four time-specific measures by A, B, C', and D, respectively.

[INSERT TABLE 1 ABOUT HERE]

Several types of log-linear models are of interest for this data set. First,
we might wish to investigate the overall dependence structure of these re-
peated responses, for example, whether it is possible to describe the data
by a hierarchical log-linear model containing only the two-way associations
between consecutive time points; that is, by a first-order Markov structure.
Second, we might want to investigate whether it is possible to simplify the
model by making use of the ordinal nature of the variables using uniform
or RC association structures. Third, latent class analysis could be used to
determine whether it is possible to explain the associations by assuming that
there is a small number of groups of children with similar developments in
marijuana use.

Table 2 reports the L? values for the estimated models. Because the
asymptotic p values are unreliable when analyzing sparse frequency tables
such as the one we have here, we estimated the p values by means of 1000
parametric bootstrapping replications. The analysis was performed with the
Latent GOLD program.

[INSERT TABLE 1 ABOUT HERE]

The high L? value obtained with Model 1 — the independence model
{A, B,C,D} — indicates that there is a strong dependence between the 4
time-specific measures. Model 2 is the model with all 2-variable associa-
tions: {AB, AC, AD, BC, BD,CD}. As can be seen from its p value, it fits
very well, which indicates that higher-order interactions are not needed. The
Markov model containing only associations between adjacent time points —
Model 3: {AB, BC,CD} — seems to be too restrictive for this data set. It
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turns out that we need to include one additional term; that is, the associa-
tion between the second and fourth time point, yielding {AB, BC, BD,CD}
(Model 4).

Model 5 has the same structure as Model 4, with the only difference that
the two-variable terms are assumed to be uniform associations (see Equation
5). This means that each two-way association contains only one instead of
four independent parameters. These “ordinal” constraints seems to be too
restrictive for this data set.

Models 6 and 7 are latent class models or, equivalently, log-linear models
of the form { XA, X B, XC, X D}, where X is a latent variable with either two
or three categories. The fit measures indicate that the associations between
the time points can be explained by the existence of three types of trajectories
of marijuana use.

Based on the comparison of the goodness-of-fit measures for the various
models, as well as their AIC values that also take into account parsimony,
one can conclude that Model 4 is the preferred one. The three-class, however,
yields a somewhat simpler explanation for the associations between the time-
specific responses.
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Table 2: Goodness-of-fit statistics for the estimated models for the data in
table 1

Model L? df p AIC
1. Independence 403.3 72 .00 259.3
2. All two-variable terms 36.9 48 .12 -59.1
3. First-order Markov 58.7 60 .05 -61.3
4. Model 3 + AJ}P 416 56 .30 -70.4
5. Model 4 with uniform associations &83.6 68 .00 -52.4
6. Two-class latent class model 126.6 63 .00 -51.0
7. Three-class latent class model 57.0 54 .12 -56.2
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