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What we hope ever to do with ease, we must learn first to do with diligence.

Samuel Johnson

1
Introduction

Preamble

Optimization plays a crucial role in various fields, ranging from engineering and
economics to machine learning and data analysis. Most of the optimization prob-
lems are hard to be solved analytically (or in some cases it is not efficient to do so),
therefore they are solved using iterative methods to approximate the solution. As
a result, the development of efficient algorithms for solving optimization problems
is crucial. To understand if an algorithm is efficient for a specific class of problems
it is important to understand the behaviour of the algorithm. Henceforth, analysis
of convergence of algorithms is a fundamental research area in optimization the-
ory. In this context, different mathematical frameworks and tools have emerged
to study and estimate the performance of optimization algorithms.

In this section we will overview general optimization problems as well as some
concepts that we will use in this thesis. We will end the chapter by providing the
societal and scientific relevance of the topic. Then, we will present the outcomes
of this research that appeared in peer-reviewed journals or are under review.

1
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1.1 Nonlinear programming

The general form of a nonlinear programming problem is as follows

inf
x∈Rn

f (x)

s. t. gi(x)≤ 0, for i = 1,2, . . . , m

h j(x) = 0, for j = 1,2, . . . , p

where x = (x1, x2, . . . , xn) represents the decision variables, f (x) is the objective
function to be minimized, gi(x) are the inequality constraints, and h j(x) are the
equality constraints [LY+84]. Any point that satisfies the constraints is called a
feasible point, and the set of feasible points is called the feasible set. Alternatively,
the feasible set can be represented by X, defined as

X=
�

x ∈ Rn | gi(x)≤ 0, h j(x) = 0, i ∈ {1, . . . , m}, j ∈ {1, . . . , p}
	

.

Therefore the optimization problem can be written as

inf
x∈X

f (x).

Analyzing such a general optimization problem is difficult, therefore we re-
view different classes of functions facilitating studying them by considering their
properties.

1.2 Classes of functions

Suppose that we want to solve the following optimization problem

inf
x∈Rn

f (x).

It is almost impossible to talk about the behaviour of an algorithm for a general
optimization problem as above [Nes18, Chapter 2], even for convergence of the
algorithm to a local minimum. Therefore, it is important to introduce some as-
sumptions on the function in order to facilitate the study of the function class. In
other words, we assume that the function under the study belongs to some func-
tion classes F and try to make these assumptions as little restrictive as possible.

In the literature convex or L-smooth functions are among the most important
function classes. A function f is called L-smooth in Rn if for some L > 0 it satisfies
the following condition,

∥∇ f (x)−∇ f (y)∥ ≤ L ∥x − y∥ for all x , y ∈ Rn.
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There are also other classes such as µ-strongly convex functions, where a function
f is called µ-strongly convex if, for some µ ≥ 0, the function f (x) − µ2∥x∥

2 is
convex. Note that a 0-strongly convex function is just a convex function.

We will also consider the class of µ-strongly convex, L-smooth functions, de-
noted by Fµ,L (Rn). A function f belongs to this class if it is both L-smooth and
µ-strongly convex. Note that the class Fµ,L (Rn) is a convex set in a suitable func-
tion space.

As we will discuss these function classes and their properties in Chapter 2 in
detail, for further discussion we refer the interested reader to look at Chapter 2
and [Nes18, Bec17].

1.3 Iterative first-order methods

Iterative methods are among the most widely used algorithms to solve an opti-
mization problem. The class of iterative algorithms ranges from zero-order to
higher order algorithms. These algorithms start from an initial point x0 and iter-
atively generate subsequent points (iterates). First-order methods are among the
iterative methods. First-order methods use only the information of the gradient
and function value at a given point. These methods can be categorized by three
strategies that they use to generate the next point, namely line search, trust re-
gion, and fixed step lengths [NW06]. In this thesis we mainly focus on methods
that use fixed step lengths.

Line-search algorithms, in general, move in a search direction dk from the
previous point xk to generate the new point xk+1. In other words, they solve the
following problem

xk+1 = argmint f (xk + tdk).

One choice for the search direction is the steepest descent direction −∇ f (xk)
[NW06, Section 2.2].

Sometimes, it is too expensive to solve the above problem. One way to deal
with this problem is to choose the step length in advance, which sometimes is
called fixed step length. The gradient descent method is a widely used fixed step
first-order iterative method. It updates the decision variables by taking steps pro-
portional to the negative gradient of the objective function, i.e.

xk+1 = xk − tk∇ f (xk).
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To have an overview on first-order methods we refer the reader to some ref-
erence books, e.g., [NW06, Nes18, Bec17].

Nocedal and Wright [NW06] name three properties that an algorithm should
possess to be called a good algorithm, namely robustness, efficiency and accuracy.
Studying worst-case convergence allows us to understand the weaknesses and
strengths of an algorithm.

1.4 Convergence rate

Convergence rate in the worst case is a crucial aspect of analyzing optimization
algorithms’ performance. In this section we present some fundamental concepts
and definitions about convergence rates.

Suppose that a sequence {xk} has a limit point x⋆. We are interested in how
fast xk − x⋆ goes to zero. We consider two types of convergence, Q-convergence
and R-convergence [BGLS06].

Convergence of the quotient series qk := ∥x
k+1−x⋆∥
∥xk−x⋆∥ as k → ∞ is called Q-

convergence of the sequence
�

xk
	

. We say the sequence
�

xk
	

converges to x⋆

Q-linearly if limsupk→∞ qk < 1. If lim supk→∞ qk = 0 we call
�

xk
	

Q-super-
linearly convergent [BGLS06, Section 1.5]. We usually omit the Q when we talk
about convergence rates, if it does not cause any confusion.

On the other hand, if ∥xk − x⋆∥ ≤ νk and νk is Q-convergent, then the se-
quence

�

xk
	

is called R-convergent [NW06, Section A.2]. We will refer back
to R-convergence in Section 9.5. It is obvious that Q-convergence implies R-
convergence.

Moreover, if ∥xk−x⋆∥
f (x0)− f (x⋆) ≤

c
kα for some constants c and α > 0, the convergence

rate of
�

xk
	

is called sub-linear, and it is denoted by O
� 1

kα
�

[Bec17].
For a comprehensive exploration of convergence rates, we recommend the

interested reader to delve into the references [NW06] and [BGLS06]. These books
provide valuable insights and in-depth analyses on the topic of convergence rates
in the context of optimization.

1.5 Performance estimation problems (PEPs)

The Performance Estimation Problem (PEP) is a mathematical framework that
aims to estimate the worst-case convergence rates and performance of optimiza-
tion algorithms, originally for calculating convergence rates of first-order algo-
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rithms. This strong tool was first introduced by Drori and Teboulle [DT14]. This
method was improved by the work of Taylor et. al [THG17c] by introducing neces-
sary and sufficient interpolation conditions for µ-strongly convex L-smooth func-
tions. Since then, many scholars used this method to find the convergence rate of
different algorithms; see Section 3.5 for the recent works on PEP.

Briefly speaking, PEP tries to model the convergence rate of the algorithm by
modeling the convergence rate problem as a semidefinite programming problem.
The idea is to find the worst objective function from a given class for a given
algorithm. In other words, PEP aims to identify the worst-case input for a given
iterative optimization algorithm. This is in itself an optimization problem in some
function space, and the surprising thing is that it may sometimes be reformulated
as a semidefinite program. We describe PEP in detail in Chapter 3.

1.6 Semidefinite programming

As mentioned above, PEP transforms convergence rate analysis of an iterative
algorithm into a semidefinite programming problem. In this section, we briefly
introduce semidefinite programming (SDP); more details are presented in Section
2.2.

Semidefinite programming is a generalization of linear programming to han-
dle optimization problems involving positive semidefinite matrix variables. More
precisely, SDP deals with optimizing a linear objective function over the set of
positive semidefinite matrices subject to some linear constraints [VB96].

Mathematically, SDP can be formulated as

p⋆ = sup
X
〈C , X 〉

s. t. 〈Ai , X 〉= bi , i = 1, . . . , m,

X ⪰ 0,

where matrix X is the variable, C , A1, . . . , Am are given symmetric matrices, and
b ∈ Rm is a given vector [LV12].

SDP has been extensively studied in the field of optimization. The works by
De Klerk [DK06], and Vandenberghe and Boyd [VB96] provide a comprehensive
overview of SDP and its applications.
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1.7 Machine learning and optimization

Machine learning typically involves a training phase, where the model learns
from data, followed by a testing phase to evaluate its performance on unseen
data, ensuring it can generalize well. Neural networks, which are central to deep
learning, consist of interconnected layers of neurons that learn complex patterns
[GBC16]. Machine learning algorithms can be broadly divided into four main cat-
egories as supervised, semi-supervised, unsupervised, and reinforcement learning
[SCZZ19]. Typically, these algorithms are used for solving optimization problems
during the training phase. This process aims to determine the optimal parameters
of a model by minimizing a loss function.

A loss function, often denoted as L(θ ), depends on the model parameters θ .
The optimization problem is then to find the values of the model parameters that
minimize this loss function. Mathematically, it can be expressed as

min
θ

L(θ ).

For a comprehensive review on loss functions we refer the interested reader to
[WMZT20]. In the context of training deep neural networks, the objective is to
minimize a cost function, which can be formulated as

min
θ

J(θ ) := E(x ,y)∼p̂data
[L( f (x;θ ), y)] .

Here, L(·) represents the loss function, f (x;θ ) denotes the predicted value for
the input x , θ stands for the model parameters, y represents the actual output,
and p̂data corresponds to the empirical distribution [GBC16].

First-order methods in deep learning, such as Gradient Descent, SGD (Stochas-
tic Gradient Descent), Momentum, and Adam, are crucial for optimizing neural
networks. They work by using the gradient of the loss function to iteratively adjust
the network’s parameters, minimizing loss [BB24, GBC16].

The importance of the use of first-order methods in machine learning forms
an additional motivation for gaining a better understanding of their convergence
analysis.

1.8 Thesis overview

We now give a brief overview of the contents of this thesis, chapter by chapter.
Moreover, a summary of the main results on the convergence rate in the thesis
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will be given later in Table 10.1.

Chapter 2

This chapter is dedicated to some preliminaries that will be used in the other chap-
ters. In particular, we present some fundamental theorems on functions, semidef-
inite programming and most importantly, we present interpolation theorems that
are foundations for the performance estimation method. These interpolation the-
orems are in the spirit of Whitney-type extension theorems that characterize when
a function may be extended to a larger domain while keeping certain properties
(like continuity, convexity, or L-smoothness).

Chapter 3

In this chapter, we introduce the performance estimation method. We show how
to get a convergence rate of a first-order algorithm using this method. We define
the Gram matrix semidefinite programming formulation and continue with dual
presentation of the performance estimation problem. We present a simple exam-
ple to show how the performance estimation method works. We conclude the
chapter by reviewing some recent works on the performance estimation method.

Chapter 4

In this chapter, we study the convergence rate of the gradient (or steepest descent)
method with fixed step lengths for finding a stationary point of an L-smooth func-
tion. We establish a new worst-case convergence rate, and show that the bound
may be exact in some cases, in particular when all step lengths lie in the interval
(0,1/L]. In addition, we derive an optimal step length with respect to the new
bound. In addition, we present an extension of L-smooth functions from a open
convex set.

Chapter 5

In this chapter, we derive a new linear convergence rate for the gradient method
with fixed step lengths for non-convex smooth optimization problems satisfying
the Polyak-Łojasiewicz (PŁ) inequality. We establish that the PŁ inequality is a
necessary and sufficient condition for linear convergence to the optimal value for
this class of problems. We list some related classes of functions for which the



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 24PDF page: 24PDF page: 24PDF page: 24

8

gradient method may enjoy a linear convergence rate. Moreover, we investigate
their relationship with the PŁ inequality.

Chapter 6

In this chapter, we study randomized and cyclic coordinate descent for convex
unconstrained optimization problems. We improve the known convergence rates
in some cases by using the numerical semidefinite programming performance es-
timation method. As a spin-off we provide a method to analyse the worst-case
performance of the Gauss–Seidel iterative method for linear systems where the
coefficient matrix is positive semidefinite with a positive diagonal. Moreover, we
study the weighted Jacobi method for solving quadratic programming problems
and revisit some well-known results in the literature.

Chapter 7

In this chapter, we study the gradient descent-ascent method for convex-concave
saddle-point problems. We derive a new non-asymptotic global convergence rate
in terms of distance to the solution set by using the semidefinite programming
performance estimation method. The given convergence rate incorporates most
parameters of the problem and it is exact for a large class of strongly convex-
strongly concave saddle-point problems for one iteration. We also investigate the
algorithm without strong convexity and we provide some necessary and sufficient
conditions under which the gradient descent-ascent enjoys linear convergence.

Chapter 8

In this chapter, we study the non-asymptotic convergence rate of the DCA (difference-
of-convex algorithm), also known as the convex–concave procedure, with two dif-
ferent termination criteria that are suitable for smooth and non-smooth decom-
positions, respectively. The DCA is a popular algorithm for difference-of-convex
(DC) problems and known to converge to a stationary point of the objective un-
der some assumptions. We derive a O(1/

p
N) worst-case convergence rate of

the objective gradient norm after N iterations for certain classes of DC problems,
without assuming strong convexity in the DC decomposition, and give an exam-
ple which shows the convergence rate is exact. We also provide a new O(1/N)
convergence rate for the DCA with another termination criterion to deal with the
non-smooth case. Furthermore, we study the convergence rate for the proximal
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gradient method and the gradient descent method. Additionally, we study the
impact of using regularization on DCA. Moreover, we derive a new linear con-
vergence rate result for the DCA under the assumption of the Polyak–Łojasiewicz
inequality. The novel aspect of our analysis is that it employs semidefinite pro-
gramming performance estimation.

Chapter 9

In this chapter, we derive new non-ergodic convergence rates for the alternating
direction method of multipliers (ADMM) by using performance estimation. We
give some examples which show the exactness of the given bounds. We also study
the linear and R-linear convergence of ADMM. We establish that ADMM enjoys a
global linear convergence rate if and only if the dual objective satisfies the Polyak-
Łojasiewicz (PŁ) inequality in the presence of strong convexity. In addition, we
give an explicit formula for the linear convergence rate factor. Moreover, we study
the R-linear convergence of ADMM under two new scenarios related to function
classes and the rank of the matrix.

Chapter 10

We end the thesis by providing some concluding remarks and possible research
questions for future work. Moreover, we provide a table summarizing the main
results of the thesis.

Societal and scientific relevance of the thesis topics

In this section, we examine the influence of our endeavors on both society and
the scientific community. As it is mentioned, optimization techniques are essen-
tial tools in a spectrum of fields, including mathematics, engineering, economics,
computer science, and more.

From the society’s perspective, the rising demand for optimization in various
fields from healthcare, environmental sustainability, to financial market and ma-
chine learning, increases the demand for more efficient algorithms to solve these
problems in an efficient way. With the increasing complexity of the systems and
the proliferation of big data, there is an ever growing demand for more efficient
and faster algorithms. The first-order algorithms demonstrate a good performance
both in practice and in theory. They usually are easy to implement and have low
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costs. On the other hand, different problems have different structures that may fit
better with one algorithm than the other. Studying first-order methods provides
practitioners with a good perspective on selecting the most suitable algorithm for
their problem with a theoretical guarantee. Moreover, first-order methods are the
back-bone for optimizing the models used in machine learning and it goes without
saying how important machine learning is in the modern world.

1.9 Contributions to the Literature

This thesis is based on the following articles:

[AdKZ22] Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani.
The exact worst-case convergence rate of the gradient method with
fixed step lengths for L-smooth functions. Optimization Letters,
16(6):1649–1661, 2022.

[AdKZ23a] Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani.
Conditions for linear convergence of the gradient method for non-
convex optimization. Optimization Letters, 17(5):1105–1125, 2023.

[AdKZ23b] Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani.
Convergence rate analysis of randomized and cyclic coordinate de-
scent for convex optimization through semidefinite programming.
Applied Set-Valued Analysis and Optimization, 5(2):141–153, 2023.

[ZAdK24] Moslem Zamani, Hadi Abbaszadehpeivasti, and Etienne de Klerk.
Convergence rate analysis of the gradient descent-ascent method for
convex-concave saddle-point problems. Optimization Methods and
Software, 2024.

[AdKZ23c] Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani. On
the rate of convergence of the difference-of-convex algorithm (DCA).
Journal of Optimization Theory and Applications, pages 1–22, 2023.

[ZAdK23] Moslem Zamani, Hadi Abbaszadehpeivasti, and Etienne de Klerk.
The exact worst-case convergence rate of the alternating direction
method of multipliers. Mathematical Programming, 2023.

These articles are used in the chapters of this thesis as follows:

Chapter 4 Based on [AdKZ22]
Chapter 5 Based on [AdKZ23a]
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Chapter 6 Based on [AdKZ23b]
Chapter 7 Based on [ZAdK24]
Chapter 8 Based on [AdKZ23c]
Chapter 9 Based on [ZAdK23]



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 28PDF page: 28PDF page: 28PDF page: 28

12



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 29PDF page: 29PDF page: 29PDF page: 29

Now is no time to think of what you do not have. Think of what you can do
with what there is.

The Old Man and the Sea, Ernest Hemingway

2
Preliminaries and interpolation theorems

Preamble

In this chapter, we delve into the study of interpolation theorems, a crucial in-
gredient extensively utilized throughout this thesis to analyze the complexity of
first-order methods. In particular, these theorems sometimes enable us to refor-
mulate the membership problem for some function classes as finite interpolation
conditions.

In recent years, interpolation theorems have gained significant attention from
researchers who aim to extend or leverage them for their analyses, particularly in
the context of performance estimation. Before delving into these theorems, we
will cover fundamental concepts in convex and smooth analysis. By establishing
a solid foundation in these areas, we can better grasp the subsequent theorems
and their implications.

2.1 Preliminaries

In this section, we introduce fundamental mathematical concepts and definitions
that will serve as the foundation for our thesis. We provide a concise overview of

13
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these key notions to establish the groundwork for our study. For a more in-depth
exploration of these mathematical concepts and the proofs, interested readers
are encouraged to refer to supplementary reference books (e.g., [Roc97, Bec17,
Nes18, HUL13]).

Let us begin with the definition of convex sets.

Definition 2.1. A set S ⊆ Rn is said to be convex if, for all x , y ∈ S and λ ∈ [0,1],
we have:

λx + (1−λ)y ∈ S.

In simpler terms, this definition implies that any line segment connecting two
points within the set also lies entirely within the set.

The notation Rn represents the Euclidean space of n dimensions. Now, let
us define the inner product and induced norm with respect to a given matrix A ∈
Rn×m. Given vectors x ∈ Rn and y ∈ Rm, their inner product with respect to
matrix A, denoted as 〈x , y〉A, is defined as:

〈x , y〉A = 〈x , Ay〉 ,

where 〈·, ·〉 denotes a reference inner product. Note that in the Euclidean space the
reference inner product is defined by 〈x , y〉= x T y for any given vectors x , y ∈ Rn.
The seminorm with respect to matrix A and the inner product 〈·, ·〉, denoted as ∥x∥A,
is defined as:

∥x∥A = ∥Ax∥=
Æ

〈Ax , Ax〉.

It is worth noting that if A has independent columns this is an induced norm; see
[HJ12, Section 5.2] for more discussion on seminorms.

Now, let us briefly discuss some properties of a function. Consider an extended
real-valued function f : Rn→ R∪{+∞}. The effective domain of the function is
defined as:

dom f = {x ∈ Rn : f (x)< +∞} .

To define the notion of relative interior we need to first define the affine hull of a
set S.

Definition 2.2. The affine hull of a set S ⊆ Rn is given by

aff S= {θ1 x1 + θ2 x2 + · · ·+ θn xn | x1, . . . , xn ∈ S, θ1 + · · ·+ θn = 1, θ1, . . . ,θn ∈ R} .

Now we define the relative interior of the set S.
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Definition 2.3. The relative interior of a set S is defined by

ri S= {x ∈ aff S | B(x ,ε)∩ aff S ⊆ S for some ε > 0} ,

where B(x ,ε) = {y | ∥y − x∥ ≤ ε} is the ball around x with radius ε.

In case that the set S is convex, alternatively, x ∈ ri(S) if and only if, for every
y ∈ S \ {x}, there exists a z ∈ S such that x is on the line segment connecting y
and z.

We end this subsection with the definition of proper functions.

Definition 2.4. A function f is called proper if there exists x ∈ Rn such that
f (x)< +∞.

Definition 2.5. For a set X ⊆ Rn, we denote the distance function to the set X by
dX (x) := infy∈X ∥y − x∥ for any x ∈ Rn. The set-valued mapping ΠX (x) stands
for the projection of x on X , that is, ΠX (x) = {y : ∥y − x∥= dX (x)}.

Note that, if X is a non-empty closed set, then ΠX (x) is non-empty and well-
defined.

2.1.1 Convex functions

Convex functions play a pivotal role in optimization and mathematical modeling.
Intuitively, a univariate function is considered convex if, for any two points in its
domain, the value of the function at any point on the line segment connecting
these two points lies below or on the line connecting the function values at those
points.

There are some alternative ways of defining a convex function mathematically
which are considered interchangeable. One definition which is very intuitive is as
follows.

Definition 2.6. Let D ⊆ Rn be a convex set. A function f : D → R is convex if,
for all x , y in its domain and for any λ with 0 ≤ λ ≤ 1, the following inequality
holds:

f (λx + (1−λ)y)≤ λ f (x) + (1−λ) f (y),

where D is the domain of the function f .
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A function is called strictly convex if the above inequality strictly holds for
x ̸= y and 0 < λ < 1. To introduce the other definition we need to define the
epigraph of a function.

Definition 2.7. For a function f : D→ R, the epigraph of f is defined by

epi f = {(x , t) ∈ D×R | f (x)≤ t} .

We now define convex and closed functions using the epigraph of the function.

Definition 2.8. A function f is convex if its epigraph is a convex set.

Definition 2.9. A function f is closed if its epigraph is a closed set.

We can characterize lower semi-continuous functions through the definition
of closed functions. In other words, a function f : Rn→ (−∞,∞] is lower semi-
continuous function if and only if it is a closed function; see [Roc97, Theorem
7.1].

2.1.2 Subgradient

Another essential concept utilized in this thesis is the notion of subgradient. To
formally define the subgradient, we first need to introduce the concept of dual
spaces. Let us consider a vector space E, and the set of all linear functionals on
E, termed the dual space, and denoted as E∗. The norm in the dual space is called
the dual norm, and it is defined as follows:

∥y∥∗ = sup
x∈E
{y(x) : ∥x∥ ≤ 1} , y ∈ E∗.

In this thesis, we focus on utilizing the Euclidean norm. An essential character-
istic of the Euclidean norm is its self-duality, expressed as ∥·∥= ∥·∥∗. Additionally,
our study centers on the vector space E = Rn, which possesses a dual space de-
noted as E∗ = Rn. In this case, any y in E∗ may be identified with x 7→ 〈x , y〉 for
some y in Rn and 〈·, ·〉 the Euclidean inner product on Rn. In other words, E∗ is
isomorphic to Rn.

This understanding provides us with the necessary tools to present a formal
definition of the subgradient.

Definition 2.10. Let f : Rn→ (−∞,+∞] be a proper function. If x ∈ dom( f ),
a vector g ∈ Rn is called subgradient of f at x if

f (y)≥ f (x) + 〈g, y − x〉 ∀y ∈ Rn.
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In a more intuitive sense, this inequality implies that the subgradient at a
given point corresponds to an affine (linear) function, which underestimates the
original function.

Now we can provide the formal definition of subdifferential.

Definition 2.11. The subdifferential of a function f at point x in its domain is the
set of all its subgradients, denoted by ∂ f (x). In other words,

∂ f (x) = {g ∈ Rn : f (y)≥ f (x) + 〈g, y − x〉 ∀y ∈ Rn} .

This definition allows us to handle cases where the function may have more
than one subgradient associated with the given point. However, when a proper
convex function is differentiable and x ∈ int (dom( f )), the set reduces to a single-
ton, equal to {∇ f (x)}; e.g. see [Bec17, Theorem 3.33]. The subdifferential pos-
sesses several important properties. For a proper function f : Rn→ (−∞,+∞],
its subdifferential at a specific point x ∈ Rn is a closed and convex set. Addition-
ally, a proper function is said to be subdifferentiable at a point x if ∂ f (x) ̸= ;,
indicating that there exists at least one subgradient at that point. Another sig-
nificant theorem related to the subdifferential of a function is known as Fermat’s
optimality condition, which can be stated as follows.

Theorem 2.12. [E.g. Bec17, Theorem 3.63] Let f : Rn→ (−∞,+∞] be a proper
convex function. Then, a point x⋆ is a global minimizer of the function f , i.e.,
x⋆ ∈ arg minx{ f (x) : x ∈ Rn}, if and only if 0 ∈ ∂ f (x⋆).

In other words, Fermat’s optimality condition asserts that a point x⋆ is a global
minimizer of the function f if and only if the subdifferential of f at that point
contains the zero vector. This condition serves as a fundamental guideline to
identify optimal solutions in convex optimization problems.

An important rule which is used in this thesis is the inclusion known as the
weak sum rule of subdifferential calculus:

m
∑

i=1

∂ fi(x) ⊆ ∂

� m
∑

i=1

fi

�

(x),

where fi : Rn → R for all i ∈ {1, . . . , m} are proper convex functions. Moreover,
equality holds if the intersection of the relative interiors of the domains of the
functions is nonempty, i.e., ∩m

i=1ri (dom ( fi)) ̸= ;.
Now, let us consider the following constrained optimization problem:

inf { f (x) : x ∈ C} , (2.1)
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where f : Rn → (−∞,+∞] is an extended real-valued proper convex function,
and the set C is a convex set. The necessary and sufficient condition for optimality
in this problem can be expressed through the following theorem:

Theorem 2.13. [E.g. Bec17, Theorem 3.68] Let f : Rn → (−∞,+∞] be an ex-
tended real-valued proper convex function, and let C be a convex set where
ri (dom( f )) ∩ ri (C) ̸= ;. Then, x⋆ ∈ C is an optimal solution of problem (2.1)
if and only if there exists g ∈ ∂ f (x⋆) such that 〈g, x − x⋆〉 ≥ 0 for any x ∈ C.

In other words, x⋆ is an optimal solution of the constrained optimization prob-
lem if and only if there exists a subgradient g of f at x⋆ such that the inner product
of g with any direction (x − x⋆) in the feasible set C is nonnegative. This condi-
tion is a fundamental result that helps identify the optimal solutions in convex
constrained optimization problems.

For a comprehensive exploration of further properties related to the subdif-
ferential and subgradient and the formal proofs of the theorems given in this sec-
tion, we recommend interested readers to consult relevant reference books such
as [Bec17].

2.1.3 Conjugate function

Another fundamental concept heavily employed in this thesis is the notion of the
conjugate function.

Definition 2.14. Let f : Rn→ (−∞,+∞] be an extended real-valued function.
The function f ∗ : Rn→ (−∞,+∞], defined by

f ∗(y) = sup
x∈Rn
{〈y, x〉 − f (x)} , y ∈ Rn,

is called the conjugate of f .

Hence, the conjugate function of f transforms a given point in the dual space
Rn into a real value. The conjugate function plays a pivotal role in various mathe-
matical and optimization analyses. The most important property of the conjugate
function is its closeness and convexity, which can be formally stated as follows.

Theorem 2.15. [E.g. Bec17, Theorem 4.3] Let f : Rn → (−∞,+∞] be an ex-
tended real-valued function. Then the conjugate function f ∗ is closed and convex.

Moreover, if f is a proper convex function, its conjugate is also proper. By
definition of the conjugate, the following theorem can be derived, which is also
known as Fenchel’s inequality.
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Theorem 2.16. [E.g. Bec17, Theorem 4.6] Let f : Rn → (−∞,+∞] be an ex-
tended real-valued proper function. For any x ∈ Rn and y ∈ Rn, we have

f (x) + f ∗(y)≥ 〈y, x〉 .

One might wonder what happens if we take the conjugate of the conjugate
function, which is known as the biconjugate, denoted by f ∗∗ and defined by

f ∗∗(x) = sup
y∈Rn
{〈x , y〉 − f ∗(y)} , x ∈ Rn.

The biconjugate also possesses some interesting properties. For any extended
real-valued function f and any x , we have f (x) ≥ f ∗∗(x). Moreover, if f is a
proper, closed, and convex function, then equality holds [Bec17, Theorem 4.8].

We can now establish a connection between the subdifferential and the con-
jugate function through the conjugate subgradient theorem.

Theorem 2.17. [E.g. Roc97, Theorem 23.5] Let f : Rn→ (−∞,+∞] be a proper
and convex function. The following two claims are equivalent for any x ∈ Rn and
y ∈ Rn:

(1) 〈x , y〉= f (x) + f ∗(y).

(2) y ∈ ∂ f (x).

If, in addition, f is closed, then (1) and (2) are equivalent to:

(3) x ∈ ∂ f ∗(y).

In simpler terms, the conjugate subgradient theorem establishes the equiva-
lence between three statements for a proper and closed convex function f , its
conjugate function f ∗, and their respective subdifferentials. This theorem pro-
vides essential insights into the relationship between the primal and dual spaces
in optimization.

Now, let us discuss some calculation rules applicable to conjugate functions.
We begin with the summation of separable functions:

Theorem 2.18. [E.g. Bec17, Theorem 4.12] Let g(x1, x2, . . . , xp) =
∑p

i=1 fi(x i)
be a seperable function, where fi : Rni → (−∞,+∞] for i ∈ 1, 2, . . . , p are proper
functions. Then, we have:

g∗
�

y1, y2, . . . , yp

�

=
p
∑

i=1

f ∗i (yi) for any yi ∈ Rni , i ∈ {1,2, . . . , p}.
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This theorem allows us to express the conjugate of separable functions as the
sum of the conjugates of each function. Next, we present another useful property
of conjugate functions.

Theorem 2.19. [E.g. Bec17, Theorem 4.14] Let f : Rn → (−∞,+∞] be an
extended real-valued function, and α ∈ R++.

• If g(x) = α f (x), then g∗(y) = α f ∗
� y
α

�

, for y ∈ Rn.

• If h(x) = α f
� x
α

�

, then h∗(y) = α f ∗(y), for y ∈ Rn.

These properties allow us to manipulate the conjugate function when the orig-
inal function is scaled.

We conclude this section with Fenchel’s duality theorem.

Theorem 2.20. [E.g. Roc97, Theorem 31.1] Let f and g be extended real-valued
proper convex functions. If the intersection of the relative interiors of the domains of f
and g is nonempty, i.e., ri (dom( f ))∩ri (dom(g)) ̸= ;, then the following relationship
holds:

inf
x∈Rn
{ f (x) + g(x)}= sup

y∈Rn
{− f ∗(y)− g∗(−y)} ,

and the supremum in the right-hand problem is attained whenever it is finite.

There are several other properties for conjugate functions, which will be dis-
cussed in the relevant chapters.

2.1.4 L-smooth functions

In this section, we will review the definition and properties of L-smooth functions,
which constitute one of the essential classes of functions studied in this thesis. Let
us begin by formally defining L-smooth functions.

Definition 2.21. Let f : Rn → (−∞,+∞] and open set D ⊆ Rn where f is
differentiable over D. f is called L-smooth over D for some L > 0 if it satisfies the
following condition:

∥∇ f (x)−∇ f (y)∥ ≤ L ∥x − y∥ for all x , y ∈ D.

The constant L in the definition is referred to as the smoothness modulus or
parameter of the function. The definition of smoothness allows us to observe that
if a function f is L1-smooth, it is also L2-smooth for every L2 ≥ L1. Consequently,
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when we refer to a function as L-smooth, we specifically mean the smallest pos-
sible value of L that satisfies the smoothness condition.

The descent lemma is one of the most important properties of L-smooth func-
tions.

Lemma 2.22. [Nes03, Lemma 1.2.3] Suppose that f : Rn → (−∞,∞] is an L-
smooth function over an open convex set D for some L > 0. Then, for every x , y ∈ D,
we have:

f (y)≤ f (x) + 〈∇ f (x), y − x〉+
L
2
∥x − y∥2 .

In particular, if y = x − 1/L∇ f (x), then

1
2L
∥∇ f (x)∥2 ≤ f (x)− f

�

x −
1
L
∇ f (x)

�

.

Additionally, we list some key properties of L-smooth functions.

Theorem 2.23. [Nes18, Theorem 2.1.5] Let f be a differentiable convex function
over Rn, and let L > 0. Then all of the following statements are equivalent:

• f is L-smooth.

• f (y)≤ f (x) + 〈∇ f (x), y − x〉+ L
2 ∥x − y∥2 for all x , y ∈ Rn.

• f (y)≥ f (x) + 〈∇ f (x), y − x〉+ 1
2L ∥∇ f (x)−∇ f (y)∥2 for all x , y ∈ Rn.

• 〈∇ f (x)−∇ f (y), x − y〉 ≥ 1
L ∥∇ f (x)−∇ f (y)∥2 for all x , y ∈ Rn.

• f (λx + (1−λ)y)≥ λ f (x)+(1−λ) f (y)− L
2λ(1−λ)∥x − y∥2 for all x , y ∈

Rn.

Furthermore, if the Hessian of a function f exists, then the module of smooth-
ness for the function can be defined by spectral radius of the Hessian. In other
words, the spectral radius of the Hessian lies within the interval [−L, L]. It’s
important to note that the spectrum of a Hessian depends on the choice of the un-
derlying inner product. Consequently, the value of L is dependent on the specific
inner product used.

The following proposition states a well-known characterization of L-smooth
functions that follows, e.g., from [Nes03, Lemma 1.2.3], [Nes03, Theorem 2.1.5]
and [THG17a, Lemma 3.9].

Proposition 2.24. Let L > 0. The function f : Rn→ R is L-smooth and the gradient
exists, if and only if it has an L-Lipschitz gradient.

We denote the class of L-smooth functions by F−L,L(D) where D ⊆ Rn.
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2.1.5 Strong convexity

We begin this section by providing the formal definition of strongly convex func-
tions.

Definition 2.25. [Nes18, Definition 2.1.3] Let µ ≥ 0. Suppose that f : Rn → R
is a continuously differentiable convex function over its domain, and for every
x , y ∈ dom( f ) the inequality

f (y)≥ f (x) + 〈∇ f (x), y − x〉+
µ

2
∥x − y∥2

holds. In this case, f is called a µ-strongly convex function.

This definition implies that a function f is µ-strongly convex if and only if the
function f (·) − µ2∥ · ∥

2 is convex. Similar to the L-smooth case, if f is strongly
convex with modulus µ1, it is also µ2-strongly convex for every 0 < µ2 < µ1.
Hence, it is essential to find the largest strongly convex modulus. Furthermore, it
is evident that a convex function is a 0-strongly convex function.

It is straightforward to observe that if f : Rn → R is a µ-strongly convex
function for some µ > 0 and g : Rn→ R is a convex function, then the sum f + g
is also a µ-strongly convex function.

The following theorem presents some essential characteristics of µ-strongly
convex functions.

Theorem 2.26. [E.g. Bec17, Theorem 5.24] Let f : Rn → R be a proper, closed,
and convex function, and let µ > 0. The following statements are equivalent:

• f is a µ-strongly convex function.

• For any x ∈ dom(∂ f ), y ∈ dom( f ), and g ∈ ∂ f (x), the inequality

f (y)≥ f (x) + 〈g, y − x〉+
µ

2
∥y − x∥2

holds.

• For any x , y ∈ dom(∂ f ) and gx ∈ ∂ f (x), g y ∈ ∂ f (y), the inequality




gx − g y , x − y
�

≥ µ∥x − y∥2

holds.
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One of the most significant characteristics of strongly convex functions is their
possession of a unique minimizer. The following theorem formalizes this property.

Theorem 2.27. [E.g. Bec17, Theorem 5.25] If f : Rn → R is a proper, closed,
and µ-strongly convex function for some µ > 0, then f has a unique minimizer.
Moreover, the following inequality holds for any x ∈ dom( f ) and x⋆, which is the
unique minimizer of f :

f (x)− f (x⋆)≥
µ

2
∥x − x⋆∥2 .

Suppose that the function f is twice continuously differentiable and the Hes-
sian of the function is positive definite. Similar to L-smooth functions, the mod-
ulus of strong convexity of f is equal to the minimum eigenvalue of the Hessian.
Therefore, one has

µI ⪯∇2 f (x)⪯ LI .

The connection between strong convexity and L-smoothness of a function can
be established using conjugate functions. The following theorem presents this
connection formally.

Theorem 2.28. [E.g. Bec17, Theorem 5.26] Suppose that µ > 0. Then:

• If f : Rn→ R is a 1
µ -smooth convex function, then its conjugate function f ∗ is

a µ-strongly convex function.

• If f : Rn→ R is a proper closed µ-strongly convex function, then its conjugate
function f ∗ is a 1

µ -smooth function.

The set of functions that are both µ-strongly convex and L-smooth is denoted
by Fµ,L(Rn). Notably, it is worth mentioning that for µ-strongly convex and L-
smooth functions, µ ≤ L always holds. Furthermore, the class of µ-strongly con-
vex functions which are not smooth is denoted by Fµ,∞(Rn).

The definitions of L-smoothness and µ-strong convexity can be influenced by
the chosen norm, raising the question of whether these definitions can be general-
ized. To address this concern, Lu et al. introduced the concepts of relative smooth-
ness and relative strong convexity with respect to a reference function [LFN18].
Inspired by their work, we define c-strongly convex functions as follows:

Definition 2.29. Let f : Rn → (−∞,∞] be a closed proper function, and let
A∈ Rn×m. We say f is c-strongly convex relative to ∥ ·∥A if the function f − c

2∥ ·∥
2
A

is convex.
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It is worth noting that in Definition 2.29 the value of c depends on the semi-
norm ∥ · ∥A that we use. Moreover, setting A= I in the definition allows us to de-
duce the definition of µ-strong convexity. It is noteworthy that any function that
is µ-strongly convex is also µ

λmax(AT A) -strongly convex with respect to the seminorm
∥ ·∥A. However, the converse is not necessarily true unless A has full column rank.
For further details on the strong convexity in relation to a given function, we refer
the reader to [LFN18, BBT17].

The set of c-strongly convex functions relative to the seminorm ∥ · ∥A on Rn is
denoted as FA

c (R
n).

2.1.6 Non-convex non-smooth functions

If a function f is non-convex and non-smooth, we will also need a more general
notion of subgradients than in the convex case.

Definition 2.30. Let f : Rn→ R be lower semi-continuous.

• The vector g ∈ Rn is called a regular subgradient of f at x̄ , written g ∈
∂̂L f ( x̄), if for all x in some neighborhood of x̄

f (x)≥ f ( x̄) + 〈g, x − x̄〉+ o (∥x − x̄∥) .

• The vector g ∈ Rn is called a general subgradient of f at x̄ , written g ∈
∂L f ( x̄), if there exist sequences {x i} and {g i} with g i ∈ ∂̂L f (x i) such that

x i → x̄ , f
�

x i
�

→ f ( x̄) , g i → g as i→∞.

It is worth mentioning that ∂̂L f ( x̄) is a closed convex set. In addition, ∂L f ( x̄)
is also closed but not necessarily convex. Note that when f is closed proper con-
vex, then ∂ f (x) = ∂̂L f (x) = ∂L f (x) for x ∈ dom( f ). We refer the interested
reader to [RW09, Chapter 8] for more discussions on regular and general subdif-
ferentials.

2.2 Semidefinite programming

In this section we discuss some concepts on semidefinite programming (SDP); for
more details see [LV12, VB96]. The standard form of semidefinite programming
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as used in [LV12] (more common is ‘inf’ instead of ‘sup’) is given by

p⋆ = sup
X
〈C , X 〉

s.t. 〈Ai , X 〉= bi , i = 1, . . . , m, (2.2)

X ⪰ 0,

where matrix X is the variable, C , A1, . . . , Am are given symmetric matrices, and
b ∈ Rm is a given vector. The inner product 〈·, ·〉 denotes the Frobenius inner
product, that is 〈A, B〉= tr(AB). If there is a positive definite matrix X that satisfies
all the constraints and X ≻ 0, then we call the problem strictly feasible; sometimes
this is called Slater’s condition [BV04, Chapter 5].

Similar to the linear programming setting we define the dual form of the pri-
mal problem 2.2, which is given by

d⋆ = inf
y

bT y

s.t.
m
∑

i=1

yiAi − C ⪰ 0, i = 1, . . . , m, (2.3)

y ∈ Rm,

where y is the variable and the constraint
∑m

i=1 yiAi − C ⪰ 0 is also known as a
linear matrix inequality (LMI). Now we provide some results on SDP which we
will use in the following chapters.

Lemma 2.31. [E.g. LV12, Lemma 2.1.1] Assume that X is a feasible solution to
Problem 2.2 and y is a feasible solution to Problem (2.3). Then we have

• p⋆ ≤ d⋆, which is known as weak duality.

• If 〈C , X 〉= bT y then p⋆ = d⋆ = 〈C , X 〉= bT y.

The difference between the supremum in the primal problem and the infimum
in the dual problem is called the duality gap, defined as d⋆ − p⋆. If there is no
duality gap, then we say that strong duality holds. The next theorem states this in
formal way.

Theorem 2.32. [E.g. DK06, Theorem 2.2] Assume that X is a feasible solution to
Problem 2.2 and y is a feasible solution to Problem (2.3). Then we have
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• If the problem (2.3) is bounded from below (i.e., d⋆ > −∞) and is strictly
feasible, then the primal problem (2.2) attains its supremum and there is no
duality gap.

• If the problem (2.2) is bounded from above (i.e., p⋆ < ∞) and is strictly
feasible, then the primal problem (2.3) attains its infimum and there is no
duality gap.

Another important concept is complementary slackness.

Theorem 2.33. Assume that X is a feasible solution of the primal problem (2.2)
and y is a feasible solution of dual problem(2.3). If (X , y) satisfy

� m
∑

i=1

yiAi − C

�

X = 0,

which is known as the complementary slackness condition, then X is an optimal
solution of the primal problem and y is an optimal solution of the dual problem.

Consider vectors u1, u2, . . . , uk ∈ Rn with k ≥ 1. Define the matrix X =
Gram(u1, u2, . . . , uk) such that X i j = uT

i u j for i, j ∈ {1, . . . , k}. This matrix is re-
ferred to as the Gram matrix of u1, u2, . . . , uk. It is noteworthy that a matrix X ∈ Sk

is positive semidefinite if and only if it can be expressed as the Gram matrix of
some vectors u1, u2, . . . , uk ∈ Rn and some n≥ k.

See [DK06] for a comprehensive overview of SDP and [MHA20] for new de-
velopments on SDP and its applications. Additionally, it’s important to note that
the MOSEK toolbox in MATLAB [ApS19] is used to solve the semidefinite pro-
gramming (SDP) problems that appear in this thesis.

2.3 Interpolation theorems

In this section, our main focus is on interpolation theorems, which play a crucial
role in formulating the performance estimation problem, as discussed in Chapter
3. The primary aim is to express a specific class of functions using a finite number
of triplets, each containing a point, the function value, and the (sub-)gradient of
the function at that point. Let us consider I be a finite index set, this enables us
to determine, based on a finite number of such triplets

��

x i; f i; g i
�	

i∈I , whether
there is a function with f

�

x i
�

= f i and g i ∈ ∂ f
�

x i
�

that belongs to a specific
class of functions. The formal definition of interpolability is given by the following
definition.
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Definition 2.34. A set of triplets
�

(x i; f i; g i)
	

i∈I ⊆ R
n×R×Rn is called Fµ,L (Rn)-

interpolable if there is a function f ∈ Fµ,L (Rn) such that for i ∈ I, f
�

x i
�

= f i

and g i ∈ ∂ f
�

x i
�

.

To illustrate interpolation, let us consider the following example.

Example 2.35. Consider
��

x1, x2, x3
�

= (−1, 1.5,4)
	

⊆ R3, the corresponding func-
tion values

��

f 1, f 2, f 3
�

= (3.07,0.52, 1.91)
	

and the corresponding gradients
��

g1, g2, g3
�

= (−1.6,−0.65,2.8)
	

⊆ R3 as illustrated in Figure 2.1. Our goal is
to determine if there exists a µ-strongly convex and L-smooth interpolating func-
tion with µ = 0.21 and L = 3.74. If such a function exists, we say that the triplet
��

x i; f i; g i
�	

i∈I , where I = {1, 2, 3}, is Fµ,L (R)-interpolable.

x

f (x)

�

x1, f (x1)
�

x1

�

x2, f (x2)
�

x2

�

x3, f (x3)
�

x3

Figure 2.1: Three points x1, x2, x3 along with their corresponding function values
and gradients

In this example, we find that there does indeed exist a function that satisfies the
conditions. It is presented in Figure 2.2 and it is given by

f (x) =











0.7167x2 + 2.3887 x ∈ (−∞,−1.5)

0.02x4 − 0.0533x3 + .16x2 − 1.04x + 1.8 x ∈ [−1.5,4.5]

0.4944x2 − 6.3112 x ∈ (4.5,∞).
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x

f (x)

�

x1, f (x1)
�

x1

�

x2, f (x2)
�

x2

�

x3, f (x3)
�

x3

Figure 2.2: A µ-strongly convex and L-smooth function, with µ = 0.21 and L =
3.74 modules, that passes through the points with the corresponding function
values and gradients shown in Figure 2.1.

Now, we present the interpolation theorems utilized in this thesis. For a com-
prehensive understanding and detailed proofs, we direct the interested reader to
[Tay17], unless specified otherwise.

The following theorem provides convex interpolation, which serves as the basis
for the other theorems.

Theorem 2.36. [THG17c, Theorem 1] The following statements are equivalent:

1.
��

x i; f i; g i
�	

i∈I is F0,∞ (Rn)-interpolable.

2. The following inequality holds for all i, j ∈ I:

f i ≥ f j +



g j , x i − x j
�

.

The proof of the theorem comes from the definition of subgradient. We move
on to a more general theorem, which provides necessary and sufficient conditions
for the class of µ-strongly convex L-smooth functions. To prove these theorems
one may use the properties of conjugate functions.

Theorem 2.37. [THG17c, Theorem 4] Let 0 ≤ µ < L ≤∞. The following state-
ments are equivalent:
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1.
��

x i; f i; g i
�	

i∈I is Fµ,L (Rn)-interpolable.

2. The following inequality holds for all i, j ∈ I:

1

2
�

1− µL
�

�

1
L



g i − g j




2
+µ



x i − x j




2 −
2µ
L




g j − g i , x j − x i
�

�

≤

f i − f j −



g j , x i − x j
�

. (2.4)

The proof of this theorem relies on the properties of conjugate functions. Using
this theorem, the following corollaries can be deduced.

Corollary 2.38. The following statements are equivalent:

1.
��

x i; f i; g i
�	

i∈I is F0,L (Rn)-interpolable.

2. The following inequality holds for all i, j ∈ I:

f i ≥ f j +



g j , x i − x j
�

+
1

2L



g i − g j




2
.

Corollary 2.39. The following statements are equivalent:

1.
��

x i; f i; g i
�	

i∈I is Fµ,∞ (Rn)-interpolable.

2. The following inequality holds for all i, j ∈ I:

f i ≥ f j +



g j , x i − x j
�

+
µ

2



x i − x j




2
.

The next theorem gives necessary and sufficient conditions forFA
c,∞-interpolablity.

Analogous to that of [THG17c, Theorem 4] (Theorem 2.37) we have the following
interpolation theorem.

Theorem 2.40. Let c ∈ [0,∞). The set
��

x i; f i; g i
�	

i∈I ⊆ R
n ×R×Rn is FA

c,∞-
interpolable if and only if for any i, j ∈ I, we have

c
2



x i − x j




2
A ≤ f i − f j −




g j , x i − x j
�

. (2.5)

Proof. The triple
��

x i; f i; g i
�	

i∈I is FA
c,∞-interpolable if and only if the triple

¦�

x i; f i − c
2



x i




2
A ; g i − cAT Ax i

�©

i∈I
is F0,∞-interpolable. By Theorem 2.36,

¦�

x i; f i − c
2



x i




2
A ; g i − cAT Ax i

�©

i∈I
is F0,∞-interpolable if and only if

f i − c
2



x i




2
A ≥ f j − c

2



x j




2
A−




g j − cAT Ax j , x i − x j
�

which implies the desired inequality.
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The other interpolation theorem of interest pertains to the class of non-convex
smooth functions.

Theorem 2.41. [THG17a, Theorem 3.10][DS20, Theorem 7 in Appendix] Let
{(x i; f i; g i)}i∈I ⊆ Rn × R × Rn with a given finite index set I and L > 0. There
exists an L-smooth function f with

f (x i) = f i ,∇ f (x i) = g i ∀i ∈ I, (2.6)

if and only if

1
2L



g i − g j




2 − L
4



x i − x j − 1
L (g

i − g j)




2 ≤ f i − f j −



g j , x i − x j
�

∀i, j ∈ I. (2.7)

In addition, if {(x i; f i; g i)}i∈I satisfies (2.7), then there exists a L-smooth function
f for which (2.6) holds and minx∈Rn f (x) =mini∈I fi −

1
2L∥g

i∥2. Moreover, letting
i∗ ∈ argmini∈I fi −

1
2L∥g

i∥2, a global minimizer of this function is given by x⋆ =
x i∗ − 1

L g i∗ .

Another proof of the first part of the above-mentioned theorem may be found
in [Wel73, Theorem 2. Page 148].

Now we provide a theorem that extends the result to a more general case.
Analogous to strongly convex functions, we define the concept of ‘minimum cur-
vature’ with modulus µ for the function f if the function f (·)− µ2∥ · ∥

2 is convex.
Notably, in this case, the minimum curvature parameter is allowed to take negative
values, unlike in the convex case where µ can only take non-negative values. The
class of functions that exhibit minimum curvature µ and are L-smooth is termed
’hypo-convex functions’ and is denoted by Hµ,L (Rn). It is worth mentioning that
when µ = −L, this class of functions reduces to non-convex L-smooth functions.
The following theorem provides the necessary and sufficient conditions for the
interpolability of this class of functions.

Theorem 2.42. [RGP22, Theorem 3.1] Let
��

x i; f i; g i
�	

i∈I ⊆ R
n × R × Rn with

a given index set I and let L ∈ (0,∞] and µ ∈ (−∞, L). There exists a function
f ∈Hµ,L (Rn) with

f
�

x i
�

= f i ,∇ f
�

x i
�

= g i i ∈ I,

if and only if for every i, j ∈ I

1

2
�

1− µL
�

�

1
L



g i − g j




2
+µ



x i − x j




2 −
2µ
L




g j − g i , x j − x i
�

�

≤

f i − f j −



g j , x i − x j
�

. (2.8)
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Homogeneous quadratic functions have a specific structure that allows us to
simplify the interpolation theorem for them, making it worth mentioning. Con-
sider the quadratic function f (x) := 1

2 x TQx where µI ⪯ Q ⪯ LI for some 0 ≤
µ ≤ L. The gradient at a given point x can be calculated as ∇ f (x) = Qx . More-
over, the function can be expressed as f (x) = 1

2 x T∇ f (x). Utilizing this represen-
tation, we can substitute the function value in the interpolation Theorem 2.37;
see [BHG22] for more details. Consequently, the interpolation theorem takes the
form:

1

2
�

1− µL
�

�

1
L



g i − g j




2
+µ



x i − x j




2 −
2µ
L




g j − g i , x j − x i
�

�

≤

1
2




g i , x i
�

−
1
2




g j , x j
�

−



g j , x i − x j
�

.

We conclude this section by providing the following theorem for µ−strongly
convex, L-smooth functions that are twice continuously differentiable in an open
convex set D ⊆ Rn, denoted by Fµ,L(D).

Theorem 2.43. [DKGT20] Let f : D → R be twice continuously differentiable,
defined on an open convex set D. The following statements are equivalent:

1. f ∈ Fµ,L(D) .

2. for all x ∈ D, µI ⪯∇2 f (x)⪯ LI.

3. On the set D, the functions f (·)− µ2∥ · ∥
2 and L

2∥ · ∥
2 − f (·) are convex.

4. For all x , y ∈ D

1

1− µL

�

1
L
∥∇ f (x)−∇ f (y)∥2 +µ∥x − y∥2−

2µ
L
〈∇ f (y)−∇ f (x), y − x〉

�

≤ 〈∇ f (x)−∇ f (y), x − y〉 .

By the example given by [Dro20], it is known that in the case that D ⊊ Rn the
inequality (2.4) does not necessarily hold. In other words, in case that D = Rn,
the last inequality can be replaced by stronger inequality (2.4). Indeed, finding
interpolation theorems over general open convex sets is an open problem; see the
discussion after Lemma 3.1 in [DKGT20].
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2.4 Conclusion

In this chapter, we have presented some fundamental theorems that will serve as
building blocks for the subsequent chapters. Initially, we reviewed key theorems
and definitions in convex analysis and smooth functions. Then, we briefly intro-
duced semidefinite programming. Subsequently, we focused on interpolation the-
orems, that are essential for performance estimation problem—the fundamental
tool for conducting our worst-case performance analysis in the upcoming chap-
ters. We ended the chapter by providing some general definition of subgradients
which we will use in Chapter 6.
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A wise man proportions his belief to the evidence.

David Hume

3
Performance estimation problems (PEPs)

Preamble

It is important to know that, in general, optimization problems are considered
unsolvable; see [Nes18, Introduction] and [NY83, Chapter 1]. Consequently, op-
timization algorithms are developed to find at least stationary points for certain
classes of functions. Some optimization algorithms are iterative methods, gen-
erating feasible points from an initial guess until, hopefully, an optimal solution
is reached. These methods differ based on the information used, like the objec-
tive function, constraint functions, and derivatives. Some use past data, while
others rely on just the information gathered from the current iteration [NW06].
It is important to know how rapidly or with what level of accuracy an algorithm
approaches the optimal solution after a certain number of iterations, if it does con-
verge. Therefore, it is important to understand the behaviour of these algorithm
for different class of functions.

In this chapter, we present the performance estimation problem (PEP), which
serves as the foundation for our subsequent convergence rate analysis. Let us
consider the following optimization problem,

inf
x∈Rn

f (x). (3.1)

33
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Here, f denotes a lower semi-continuous function, potentially convex and smooth,
which is lower-bounded by some f ⋆ > −∞.

In this thesis, we focus on the worst case convergence rate of first-order meth-
ods from black-box perspective. This means that we assume the availability of
the (sub-)gradient and function value at a given point. To analyze the worst-case
convergence of a function, we utilize the performance estimation problem (PEP)
— described below — which uses interpolation theorems discussed in Chapter 2.

Generally, expressing the worst-case convergence rate of an algorithm as an
optimization problem results in an intractable task. However, PEP provides us
with valuable tool to reformulate the problem as a semidefinite problem, offering
a tractable problem that is independent of the dimension of the problem (3.1).

In the subsequent sections, we begin by expressing the worst-case conver-
gence rate of an algorithm as a mathematical programming problem. We then
transform this problem into a semidefinite programming formulation. Finally, we
demonstrate how to derive a convergence rate by solving its Lagrangian dual. For
simplicity, in the rest of the chapter we consider that the function f is L-smooth
with finite L; for the cases that the function is not necessarily L-smooth we refer
the reader to Chapters 8 and 9.

3.1 Worst case formulation of convergence rate of itera-
tive first-order methods

Performance estimation problems were introduced in the seminal paper by Drori
and Teboulle [DT14]. We focus on studying the convergence rate of first-order
methods from an oracle viewpoint. Studying complexity from the oracle view-
point was initially introduced by Nemirovski and Yudin in their book [NY83]. This
viewpoint involves considering the function value and the (sub-)gradient of the
function at a given point, denoted as f i , g i , where g i represents the (sub-)gradient
of the function at point x i .

Let us consider an iterative first-order algorithm M that starts from the initial
point x0. In each iteration, first-order algorithms use the function value and the
gradient of the points generated in the previous iterations, as well as the initial
point x0. This combination is known as the first-order oracle, denoted by O f . In
other words, the first-order oracle of function f at point x is defined as O f (x) =
{ f (x),∇ f (x)}. Using this notation, we can express the points generated by black-
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box first-order methods after N iterations as follows.























x1 =M
�

x0,O f (x0)
�

x2 =M
�

x0,O f (x0),O f (x1)
�

...

xN =M
�

x0,O f (x0),O f (x1), . . . ,O f (xN−1)
�

.

To analyze an algorithm we need to determine a performance measure or
criterion. Natural and common performance measures which are used in the lit-
erature, depending on the problem class, are distance of the point generated by
the algorithm in last iterate from the optimal solution, ∥xN − x⋆∥, the distance of
the function value from optimal value, f (xN )− f ⋆, and the norm of the gradient,
∥∇ f (xN )∥, as well as other measures.

Let us consider a performance measure denoted by P(O f , x0, x1, . . . , xN , x⋆).
In order to analyze an algorithm, we must establish an initial condition for the
starting point x0 to measure the algorithm’s performance. A commonly used ini-
tial condition is to restrict the distance of the initial point from the optimal so-
lution, given by ∥x0 − x⋆∥ ≤ ∆, where ∆ represents a predetermined constant.
It is readily seen that this is problem-specific and it can be different for differ-
ent algorithms and different function classes; for more initial conditions see the
subsequent chapters.

For the remainder of this chapter, we will focus exclusively on the case where
the function class is restricted to smooth convex or smooth strongly convex func-
tions, for the sake of simplicity and illustration. Since the original problem (3.1)
is a minimization problem, when evaluating the worst-case convergence rate, we
aim to maximize the performance measure to evaluate the worst case scenario.
Thus, we can formulate the worst-case convergence of the given algorithm M
after N iterations within a specific class of functions F as follows.

w(F ,∆,M, N ,P) = sup
f ,x1,x2,...,xN ,x⋆

P(O f , x0, x1, . . . , xN , x⋆)

s. t. f ∈ F

x⋆ is an optimal solution of f (3.2)

x1, x2 . . . , xN are generated by the algorithm M

given x0 and O f

∥x0 − x⋆∥ ≤∆.
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This problem is intractable in general because we aim to optimize over the, typ-
ically infinite-dimensional, function class. To solve this issue, we use the inter-
polation theorems which are discussed in Chapter 2. Using these results we can
rewrite the problem 3.2 as a finite-dimensional problem.

w f (∆,M, N ,P) = sup
{x i ; f i ;g i}i∈I∈(Rn×R×Rn)N+2

P
��

x i; f i; g i
	

i∈I

�

s. t.
�

x i; f i; g i
	

i∈I are F -interpolable

i.e. f i = f (x i) and g i =∇ f (x i) for i ∈ I

x⋆ is an optimal solution of f (3.3)

x1, x2 . . . , xN are generated by the algorithm M

∥x0 − x⋆∥ ≤∆,

where I = {0, 1, . . . , N ,⋆}. Using interpolation theorems that give necessary and
sufficient conditions for different class of functions, it can be easily seen that prob-
lems (3.2) and (3.3) are equivalent as the only difference is the first constraint.
For a comprehensive understanding of this topic, we recommend interested read-
ers to refer to Taylor’s thesis on performance estimation problems [Tay17, Chapter
4] and Drori’s thesis [Dro14, Chapter 2].

Problem (3.3) is finite-dimensional but still it is not a convex problem due to
the non-convex quadratic constraints imposed by interpolation conditions. In the
next section, we will provide a Gram matrix reformulation of the problem to make
it a semidefinite programming problem.

3.2 Gram matrix reformulation

In this section, our objective is to formulate worst-case convergence rates of itera-
tive first-order methods with a fixed step length as a mathematical programming
problem. We start by introducing fixed step first-order methods. In general, fixed
step iterative methods are characterized by the fact that the current point generated
by the algorithm depends only on the starting point and the gradients of the points
generated by the algorithm, using a pre-determined step length. Mathematically,
the iterative process is expressed as follows.

xk = x0 −
k
∑

i=1

tki g
i−1, (3.4)

where:
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• x0 represents the starting point,

• g i denotes the gradient of the point x i , and

• tki are fixed step lengths for the iterations.

One of the most well-known first-order methods is the gradient descent method
with fixed step-size described in Algorithm 3.1.

Algorithm 3.1 Gradient method with fixed step lengths

Set N and {tk}Nk=1 (step lengths) and pick x0 ∈ Rn.
For k = 1,2, . . . , N perform the following step:

1. xk = xk−1 − tk∇ f (xk−1)

For more details about this algorithm see Chapter 4 and Chapter 5. Note that
Algorithm 3.1 fits in the general framework (3.4) by setting tkk = tk and tki = 0
if i ̸= k.

The function classes Fµ,L along with the iterative first-order methods, are in-
variant concerning translations of the domain and shifts in function values, i.e.

f ∈ Fµ,L (Rn) =⇒ x 7→ f (x + c) + d ∈ Fµ,L (Rn) ,

where c ∈ Rn and d ∈ R are fixed.

Remark 3.1. Without loss of generality, we may therefore assume that f ⋆ = 0 and x⋆

is the zero vector. Additionally, when studying unconstrained optimization problems,
so in problem 3.3 we can set x⋆ = 0, g⋆ = 0, f ⋆ = 0 without loss of generality
because of the optimality conditions for the unconstrained problem 3.1.

To proceed with performance estimation for this class of algorithms, we intro-
duce a Gram matrix. Consider the following n× (N + 2) matrix

P = [g0 g1 . . . gN x0], (3.5)

where g i represents the gradient of the function at point x i , and x0 denotes the
starting point. Now, let us define Gram matrix G = Gram(g0, g1, . . . , gN , x0) =
PT P ∈ SN+2, where SN+2 denotes the set of symmetric (N +2)× (N +2)matrices.
The elements of G can be expressed as follows

G =















g0




2
. . .




g0, gN
� 


g0, x0
�

...
. . .

...
...




g0, gN
�

. . .


gN




2 


gN , x0
�




g0, x0
�

. . .



gN , x0
� 

x0




2













, (3.6)
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it is easily seen that this matrix is independent of the dimension of the x0 and g i .

We observe that by using (3.4), it becomes possible to express xk as a linear
combination of x0 and g i . This allows for the reformulation of the constraints
within the context of problem (3.3) using both the Gram matrix G and the function
values of f i .

With this foundation in place, we can now proceed to introduce a semidefinite
programming problem to address the performance estimation problem. In this re-
gard, we consider the general case for the performance measure. We consider the
performance measure as combination of function value as well as any quadratic
function of the variable xN and the gradient of the function at the last iterate. It
can be easily seen that this can be generalized to other cases for example when
we consider ergodic convergence rate, but for the simplicity in this part we just
consider the most common criterion. In other words, we consider

P
��

x i; f i; g i
	

i∈I

�

= b( f (xN )− f ⋆) + c1∥gN∥2 + c2











x0 −
N
∑

i=1

t i g
i−1 − x⋆











2

,

where b, c1 and c2 are some real numbers. By considering this criteria the semidef-
inite programming problem can be written as

w f (∆,M, N ,P) = sup
{G∈SN+2, f ∈RN+1}

b f N + tr (GC)

s. t. f j − f i + tr(GAi j)≤ 0 ∀i, j ∈ I

tr(GA∆)≤∆2 (3.7)

G ⪰ 0

rank(G)≤ n.

In this conceptual framework, the matrices denoted as Ai j arise from interpolation
theorems, while the matrix A∆ is related to the initial conditions. To show how
to construct the matrices Ai j we use the same notation as used in [Tay17, Section
4.2.3]. Let us define t i ∈ RN+2 for i ∈ {0, . . . , N ,⋆} by

tT
i = (−t i,1,−t i,2, . . . ,−t i,i , 0, . . . , 0, 1), tT

⋆ = (0, . . . , 0).

By this definition and the definition of P as in (3.5) one can easily see that x i = P t i .
Also, define ui = ei+1 ∈ RN+2 for i = 0,1, . . . , N+1 and u⋆ = 0N+2. For the purpose
of easy reference, consider the interpolation constraint given by the interpolation

https://s.t.fj/
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Theorem 2.4,

1

2
�

1− µL
�

�

1
L



g i − g j




2
+µ



x i − x j




2 −
2µ
L




g j − g i , x j − x i
�

�

≤

f i − f j −



g j , x i − x j
�

.

By the defined Gram matrix (3.6), we can write this as follows.

fi ≥ f j +
L

L −µ

�

uT
j Gt i − uT

j Gt j

�

+
1

2(L −µ)
�

ui − u j

�T
G
�

ui − u j

�

+

µ

L −µ
�

uT
i Gt j − uT

i Gt i

�

+
Lµ

2(L −µ)
�

t i − t j

�T
G
�

t i − t j

�

.

Using this inequality, Ai j is defined as

2Ai j =
L

L −µ

�

u j

�

t i − t j

�T
+
�

t i − t j

�

uT
j

�

+
1

L −µ
�

ui − u j

� �

ui − u j

�T
+

µ

L −µ

�

ui

�

t j − t i

�T
+
�

t j − t i

�

uT
i

�

+
Lµ

L −µ
�

t i − t j

� �

t i − t j

�T
.

The matrix A∆ can be defined similarly as

A∆ = uN+1uT
N+1.

Also, the matrix C is constructed in the same way using values of c1, c2, and the
recursion formula for xN .

As it is discussed the initial conditions can be different based on the problem
under study. In this context, we primarily focus on introducing the commonly em-
ployed initial condition for the sake of simplicity. Subsequent chapters will delve
into specific problems, each accompanied by distinct initial conditions related to
the particular problems.

If n is equal to or greater than N +2, it is possible to reformulate the problem
as a standard semidefinite programming problem [THG17c, Theorem 5]. This
reformulation eliminates the rank constraint, effectively transforming the problem
into a convex programming problem. Consequently, it can be solved to an optimal
solution, if such a solution exists.

wsdp
f (∆,M, N ,P) = sup

{G∈SN+2, f ∈RN+1}
b f N+1 + tr (GC)

s. t. f j − f i + tr(GAi j)≤ 0, ∀i, j ∈ I

tr(GA∆)≤∆2 (3.8)

G ⪰ 0,

https://s.t.fj/
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where I = {0, 1, . . . , N + 1,⋆}.
In this thesis we just consider the case that n≥ N+2. As it is shown in Section

2.2, under this condition, the Problems (3.7) and (3.8) attain the same optimal
values. Otherwise, when this condition is not met, Problem (3.8) is a relaxation
of Problem (3.7) and we get an upper bound for the convergence rate by solv-
ing Problem (3.8). The assumption n ≥ N + 2 is satisfied for many real-world
problems. Moreover, from the complexity perspective, one is usually interested
in the asymptotic performance as n grows to infinity. For a more comprehensive
understanding of how the matrices are constructed to establish problem (3.8), we
provide a simple example in Section 3.4; also see subsequent chapters where each
chapter is dedicated to a specific problem.

3.3 Dual multipliers

Solving the dual of (3.8) provides us with useful information about the conver-
gence rate of a given algorithm by providing dual multipliers, which help to de-
duce an analytical proof for the convergence rate. According to the weak duality
theorem (see Lemma 2.31), the dual formulation (problem (3.9) below) can yield
an upper bound for problem (3.8). As our goal is to find an upper bound on the
convergence rate of an algorithm, a solution to the dual problem offers precisely
that; see Section 2.2. Within this section, we proceed to present the Lagrangian
dual formulation of the problem (3.8) as

inf
λi j ,τ

τ∆2

s. t. τA∆ − C +
∑

i, j∈I
λi jAi j ⪰ 0

b−
∑

i, j∈I
λi j(u j − ui) = 0 (3.9)

λi j ≥ 0, ∀i, j ∈ I

τ≥ 0,

where I = {0, 1, . . . , N + 1,⋆}, ui is defined as in Section 3.2, the dual variable τ
refers to the constraint related to the initial condition in the primal problem, and
dual variable λi j refers to the constraints related to the interpolation constraints
which corresponds to the pairs of the points i and j. The parameter t i j is step
length defined in relation (3.4). It is shown in the next theorem that under the
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assumption t i,i ̸= 0 for i = 1 . . . , N , there is no duality gap between problem
(3.8) and (3.9), since the Slater condition holds in this case (see Section 2.2 and
[BV04] for more details); for more details see the proof of Theorem 4.7 in [Tay17,
Section 4.2.4]. Recall that the assumption t i,i ̸= 0 means that each generated
point depends on the previously generated point.

Theorem 3.2. [THG17c, Theorem 6] If t i,i ̸= 0 for all i ∈ {1, . . . , N} and 0 ≤ µ <
L <∞, the optimal values of problem (3.8) and (3.9) are the same and finite.

To prove this theorem, Taylor et al. provide a quadratic function that satisfies
the constraints of Problem (3.8) with G ≻ 0. This means that the Slater condition
holds and the duality gap between both problems is equal to zero [THG17c].
The question that naturally arises at this point is whether this method exclusively
provides us with a numerical solution for a specific set of parameter values. In
essence, how can one derive an analytical solution for the algorithm’s convergence
rate in a general case that can be mathematically verified?

To determine a convergence rate through this method, one must solve prob-
lem (3.9) for various parameters that are ∆, N , t i, j , L,µ. By using these diverse
combinations, one can estimate the optimal values and dual multipliers for the
primal problem. Subsequently, applying weak duality, it becomes possible to con-
struct an analytical proof for the convergence rate. To illustrate this procedure we
provide a simple example.

3.4 A simple example

In this section, we will demonstrate the proofs of the performance estimation
method by applying it to a straightforward example introduced in [THG17c]. Our
objective is to determine the worst-case performance of a single iteration of the
gradient descent method (see Algorithm 3.1) with a step length of t = 3

2L when
addressing the unconstrained optimization problem (3.1). We make the assump-
tion that the function f is a smooth convex function with Lipschitz constant L. As
performance measure, we will use the metric f (x1) − f ⋆, along with the initial
condition ∥x1 − x⋆∥=∆.

The optimal solution to the corresponding dual SDP problem (3.9) associated
with this problem is L∆2

8 , and it is achieved with the dual variables λ01 = λ⋆0 =
λ⋆1 =

1
2 and τ = L

8 . Additionally, the optimal positive semidefinite dual slack
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matrix is

S =
1
2





1
L

1
L
−1
2

1
L

1
L
−1
2

−1
2

−1
2

L
4



⪰ 0,

which is a rank one matrix. After retrieving the dual multipliers corresponding
to the constraints, one can prove the inequality below (3.10) by constructing the
following inequality, which can be obtained by multiplication of the corresponding
dual variables to the constraints

f (x1)− f (x⋆)−
L
8
∥x0 − x⋆∥2−

1
2

�

f (x1)− f (x0) + 〈∇ f (x1), x0 − x1〉+
1

2L
∥∇ f (x0)−∇ f (x1)∥2

�

−

1
2

�

f (x0)− f (x⋆) + 〈∇ f (x0), x⋆ − x0〉+
1

2L
∥∇ f (x0)−∇ f (x⋆)∥2

�

−

1
2

�

f (x1)− f (x⋆) + 〈∇ f (x1), x⋆ − x1〉+
1

2L
∥∇ f (x1)−∇ f (x⋆)∥2

�

=

−
L
2









1
2
(x0 − x⋆)−

∇ f (x0)
L
−
∇ f (x1)

L









2

≤ 0.

To verify the validity of the equality, one can set∇ f (x⋆) = 0 and through elemen-
tary calculus check it. Given that the terms related to the interpolation constraints
are negative, we can deduce the following result

f (x1)− f (x⋆)≤
L
8
∥x0 − x⋆∥2. (3.10)

It is important to notice that this example is just for illustration purpose. If the
criteria and initial condition are not the same, one cannot deduce a general con-
vergence rate only after studying one iteration of the algorithm. To do so, it is
necessary to provide the proof for an arbitrary number of iterations N . Here, for
the purpose of illustration we just provided the proof for only one iteration which
shows the behaviour of the function value with respect to the distance of the initial
point from the optimal solution.

To determine the tightness of this bound, it is necessary to identify a function
that achieves this bound following a single iteration of the algorithm. To find such
a function, we may need to solve the primal problem (3.8). If the optimal value of
the primal problem equals the optimal value of the corresponding dual problem,
then by strong duality theorem, we can identify the worst-case function. In the
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case of this example, the following primal solution is optimal:

f 0 =
L∆2

2
, f 1 =

L∆2

8
, and G = L∆2





L −L
2 1

−L
2

L
4

−1
2

2 −1
2 L



⪰ 0,

where G is a rank one matrix. Now one can set the values f (x0) = L∆2

2 , f (x1) =
L∆2

8 ,∇ f (x0) = L∆,∇ f (x1) = −L∆
2 , and x0 =∆. This corresponds to the function

f (x) = L
2 x2. In other words, it can be checked that one iteration of the algorithm

over the function f (x) = L
2 x2 attains the bound (3.10) if the step length is equal

to 3
2L , i.e. x1 = x0 − 3

2L∇ f (x0) with the starting point x0 =∆.
One might wonder about the process of generating a function that achieves the

bound and belongs to the function class. Generally, this process is based on an ed-
ucated guess. Initially, it involves identifying suitable function values, gradients,
and points that meet the optimal solution of Problem (3.8). Subsequently, using
the properties of subgradients and conjugate functions, it is possible to conjecture
a function that belongs to the specified function class and obtains the worst-case
convergence rate.

As it is discussed in the previous section, PEP is considered as a computer-
assisted method for finding worst-case convergence rates. To this end, we formu-
late the corresponding dual problem. Subsequently, we try to solve the problem
using different settings of the parameters. This helps us to guess parametric op-
timal solutions to the dual problem as well as the optimal dual multipliers. Fol-
lowing this, one needs to verify the proof analytically, similar to the one in the
example. Therefore, the computer is just used for finding the dual variables but
the proofs are independent of the computer.

3.5 Some recent works on/with PEP

To conclude this chapter, in this section we provide a brief overview on some re-
cent research done by other scholars using PEP without getting into all the details.
As mentioned, the performance estimation method is a strong tool in worst-case
convergence rate analysis of first-order methods, used by a growing number of
scholars to evaluate the convergence rate of different algorithms in different set-
tings, initially introduced in Drori and Teboulle’s seminal paper [DT14].

The gradient descent method, originally introduced by Cauchy in 1847 [Cau47],
has been a topic of interest for researchers aiming to understand its computational
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complexity for different classes of functions. Rotaru et al. studied this method
[RGP22]. They extended the result provided in [AdKZ22] to the generalization
of Fµ,L , where µ is allowed to take negative values, and proved that the given
bound is tight for this class of functions with some step lengths [RGP22].

In the setting of strongly convex functions, the gradient descent method with
fixed step-length is studied in [Tay17] and when the line search is implemented
in each iteration [dKGT17] proved a tight convergence rate by providing a con-
vex quadratic function that attains the bound. Moreover, the worst case conver-
gence rate for L-smooth convex functions with step-length less than 1

L is given
by [DT14]. Recently, using PEP, Grimmer has shown that for L-smooth convex
functions instead of considering fixed step-length, taking long steps periodically
in the iterations of the gradient descent method improves the convergence rate
[Gri23]. In the same spirit, Grimmer et al. [GSW23] introduced long steps for
the gradient method and provided a new accelerated convergence rate of the al-
gorithm for smooth convex functions. Also, more recently, Altschuler and Parrilo
provided new results on the long step gradient descent method [AP23a, AP23b].

One variation on the gradient method is the coordinate descent method; see
Chapter 6 for more details of the algorithm. For the class of smooth convex func-
tions, [KHG23] proposed a method to study the convergence of this type of algo-
rithm.

Using PEP Zamani and Glineur managed to find the tight convergence rate
for the subgradient methods considering the last iterate of the algorithm [ZG23].
Fixing the number of iterations N , they provide the optimal constant step size
based on the convergence rate. The optimal subgradient method introduced in
the paper matches the best known lower bound.

Bousselmi et al. extended the PEP framework to analyze linear operators
[BHG23]. Using this framework they were able to analyze composed objective
function and also the Chambolle-Pock method.

Beyond first-order methods, de Klerk et al. using PEP managed to find worst-
case convergence rate for one iteration of Newton method which is a second order
method [DKGT20]. This line of work shows that in some cases PEP may be used
to find convergence rate of second order methods as well.

Ryu et al. extended performance estimation to find the tight contraction fac-
tors for operator splitting methods [RTBG20]. They proposed some interpolation
theorems and called their methodology operator splitting performance estimation.

Kim and Fessler [KF18a] presented a relaxed PEP to recover the results of
fast iterative shrinkage/thresholding algorithm (FISTA), originally proposed in
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[BT09], and introduced a generalized version of the algorithm. The same authors
in another paper used PEP to generalize the optimized gradient method [KF18b].
In other papers, Kim and Fessler considered the step length of the first-order meth-
ods as a variable. In this case, PEP transforms to a bilinear optimization problem
to find the best step length that minimizes the worst-case convergence of the al-
gorithm with regard to the criterion. With this, they could manage to find new
algorithms for convex smooth optimization problem [KF16, KF21]. To design new
first-order algorithms, Gupta et al. [DGVPR23] developed a branch-and-bound
performance estimation programming (BnB-PEP) method to efficiently deal with
nonconvexity that arises in optimizing a first-order method. Moreover, using this
tool, Jang et al. presented a new method called OptISTA which is developed based
on FISTA method [JGR23].

Finding Lyapunov functions is of importance in studying first-order methods.
Recently, Moucer et al. [MTB23] developed a systematic way using PEP to find
and verify Lyapunov functions. PEP is also extended by Upadhyaya et al. to find
quadratic Lyapunov inequalities to derive tight convergence rates for some classes
of first-order methods [UBTG23].

Under negative comonotonicity assumptions Gorbunov et al. studied some al-
gorithms for variational inequality and min-max optimization using PEP [GTHG23].
Moreover, Gorbunov et al. using this method could manage to derive the known
convergence rate for the Past Extragradient (PEG) method with fewer assump-
tions [GTG22], in fact they removed the assumptions on the Lipschitz Jacobian
which was used to prove the convergence rate. Moreover, for maximally mono-
tone operators, Kim developed an accelerated proximal point using PEP [Kim21].
On the other hand, Gu and Yang could manage to find tight ergodic convergence
rate of a proximal point algorithm for monotone variational inequalities [GY22].

Furthermore, performance estimation method and integral quadratic constraints
(IQC) formulation is combined to find new algorithms by Lessard et al. [LRP16].

To make the use of this computer-assisted method easy, in two papers the au-
thors developed a package (toolbox) to be used in Python (MATLAB) [GMG+22,
THG17b], called PEPit (PESTO). Using these packages the user can easily numer-
ically compute the complexity of some of the well-known first-order methods for
different settings of the parameters.

There are some other works that are done using PEP; e.g. [PR23, DT20,
DTdB21, TD23, THG18, TVSL18]. This list is not exhaustive, though.
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Men pass away, but their deeds abide.

Augustin-Louis Cauchy

4
The exact worst-case convergence rate of

the gradient method with fixed step
lengths for L-smooth functions

Preamble

In this chapter, we study the convergence rate of the gradient (also known as
steepest descent) method with fixed step lengths, which is introduced earlier in
Algorithm 3.1, for finding a stationary point of an L-smooth function. We establish
a new convergence rate, and show that the bound may be exact in some cases, in
particular when all step lengths lie in the interval (0, 1/L]. In addition, we derive
an optimal step length with respect to the new bound. This chapter is based on
the paper [AdKZ22], except for Section 4.4 that deals with extensions of L-smooth
functions.

47
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4.1 Introduction

We consider the non-convex unconstrained optimization problem

inf
x∈Rn

f (x), (4.1)

where f : Rn → R is bounded from below, and let a real number f ⋆ denote a
lower bound for problem (4.1). In addition, we assume throughout the chapter
that f has an L-Lipschitz gradient, that is, f satisfies the conditions in Definition
2.21 for some (known) Lipschitz constant L > 0.

Problem (4.1) arises naturally in many applications including machine learn-
ing, signal and image processing, to name but a few [BCN18, JK+17]. One of the
historic solution methods for problem (4.1) is the gradient method, proposed by
Cauchy in 1847 [Cau47].

The gradient method with fixed step lengths may be described as follows.

Algorithm 4.1 Gradient method with fixed step lengths

Set N and {tk}Nk=1 (step lengths) and pick x0 ∈ Rn.
For k = 1, 2, . . . , N perform the following step:

1. xk = xk−1 − tk∇ f (xk−1)

Nesterov [Nes03, page 28] gives the following convergence rate (to a station-
ary point) for Algorithm 4.1 when tk ∈ (0, 2

L ), k ∈ {1, . . . , N}:

min
0≤k≤N



∇ f (xk)


≤





f (x0)− f ⋆
�

∑N
k=1 tk(1−

1
2 Ltk)

�

+ 1
2L





1/2

.

In the special case tk =
1
L , k ∈ {1, . . . , N}, the last bound becomes

min
0≤k≤N



∇ f (xk)


≤
�

2L( f (x0)− f ⋆)
N + 1

�1/2

.

By employing the performance estimation method, Taylor [Tay17, page 190],
without giving a proof, states the following convergence rate

min
0≤k≤N



∇ f (xk)


≤
�

4L( f (x0)− f ⋆)
3N

�1/2

, (4.2)
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for tk =
1
L , k ∈ {1, . . . , N}. Drori and Shamir [DS20, Corollary 1 in Appendix]

considers the case that all step lengths are smaller than 1
L , and proves the following

convergence rate

min
0≤k≤N



∇ f (xk)


≤

�

4( f (x0)− f ⋆)
∑N

k=1 tk(4− Ltk)

�1/2

. (4.3)

It can be observed that when the step lengths are the same for each iteration and
tend to 1

L , the bound (4.3) reduces to Taylor’s convergence rate.
In this chapter, we investigate the convergence rate of Algorithm 4.1 further.

By using the performance estimation method, we provide a converge rate, which is
tighter than all aforementioned bounds. For example, as a part of our main result
in Theorem 4.3, we improve on (4.3) by showing, for any choice of tk ∈ (0,

p
3/L)

(k ∈ {1, . . . , N}), that

min
0≤k≤N



∇ f (xk)


≤

�

4( f (x0)− f ⋆)
∑N

k=1 min(−L2 t3
k + 4tk,−Lt2

k + 4tk) +
2
L

�1/2

. (4.4)

As a consequence, we also prove and improve on (4.2) by showing, in the special
case where all tk = 1/L (k ∈ {1, . . . , N}), that

min
0≤k≤N



∇ f (xk)


≤
�

4L( f (x0)− f ⋆)
3N+2

�1/2
.

In addition, we construct an L-smooth function that attains the given bound in
Theorem 4.3 for certain step lengths. We also propose an optimal step length

that minimizes the right-hand-side of the bound (4.4), namely tk =
p

4/3
L for all

k ∈ {1, . . . , N}.

Outline

The chapter is organized as follows. We describe the performance estimation
technique for this specific problem in Section 4.2. In Section 4.3, we study the
convergence rate by using performance estimation. Section 4.4 is dedicated to
study of extension of L-smooth functions. Finally, we conclude the chapter with
a conjecture.

4.2 Performance estimation

As it is mentioned in Chapter 3, computation of the worst-case convergence rate
for a given iterative method and a given class of functions is an infinite-dimensional
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optimization problem; for more details of the performance estimation see Chapter
3.

Similar to problem (P) in [DT14], the worst-case convergence rate of Algo-
rithm 4.1 may be formulated as the following abstract optimization problem,

max
�

min
0≤k≤N



∇ f (xk)




�

s. t. f (x0)− f ⋆ ≤∆

xN , xN−1, . . . ., x1 are generated by Algorithm 4.1 w.r.t. f , x0 (4.5)

f (x)≥ f ⋆ ∀x ∈ Rn

f ∈ F−L,L(Rn)

x0 ∈ Rn,

where ∆ ≥ 0 denote the difference between the given lower bound, f ⋆, and the
value of f at the starting point. In problem (4.5), f and x0 are decision variables.
This is an infinite-dimensional optimization problem with infinite number of con-
straints, and consequently intractable in general. In what follows, we provide a
semidefinite programming relaxation for the problem.

The following well-known result is a fundamental property of gradient descent
for L-smooth functions, if the step length 1/L is used.

Proposition 4.1. [Nes03, page 26] If f : Rn→ R is L-smooth, and x ∈ Rn, then

f
�

x −
1
L
∇ f (x)

�

≤ f (x)−
1

2L
∥∇ f (x)∥2.

Using this and Theorem 2.41, we will formulate problem (4.5) as a finite di-
mensional optimization problem.

max
�

min
0≤k≤N



gk




�

s. t. 1
2L



g i − g j




2 − L
4



x i − x j − 1
L (g

i − g j)




2 ≤ f i − f j−



g j , x i − x j
�

i, j ∈ {0, . . . , N}

xk = xk−1 − tk gk−1 k ∈ {1, . . . , N} (4.6)

f k ≥ f ⋆ k ∈ {0, . . . , N}

f 0 − f ⋆ ≤∆.
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In the above formulation, xk, gk, f k, k ∈ {0, . . . , N}, are decision variables. Note
that in the above formulation, the constraints f (x) ≥ f ⋆ for each x ∈ Rn are re-
placed by the weaker condition f k ≥ f ⋆, k ∈ {0, . . . , N}. Therefore, the optimal
value of (4.5) and (4.6) may not be equal in general. However, if an optimal solu-
tion of problem (4.6) satisfies f ⋆ =min0≤k≤N f k− 1

2L∥g
k∥2, then the formulation

will be exact; see the second part of Theorem 2.41. By Proposition 4.1, we have
f (x)− 1

2L∥∇ f (x)∥2 ≥ f ⋆ for x ∈ Rn. Hence, we replace the constraint f k ≥ f ⋆

by f k − 1
2L∥g

k∥2 ≥ f ⋆ and consider the following problem:

max
�

min
0≤k≤N



gk




�

s. t. 1
2L



g i − g j




2 − L
4



x i − x j − 1
L (g

i − g j)




2 ≤ f i − f j−



g j , x i − x j
�

i, j ∈ {0, . . . , N − 1, N}

xk = xk−1 − tk gk−1 k ∈ {1, . . . , N} (4.7)

f k − 1
2L∥g

k∥2 − f ⋆ ≥ 0 k ∈ {0, . . . , N}

f 0 − f ⋆ ≤∆.

From the constraint xk = xk−1 − tk gk−1, we get x i = x0 +
∑i−1

k=0 tk+1 gk, i ∈
{1, . . . , N}. By using this relation to eliminate the x i (i ∈ {1, . . . , N}), problem
(4.7) may be written as follows:

max ℓ

s. t. f i − f j − 1
2L



g i − g j




2
+ L

4











−
i−1
∑

k= j

tk+1 gk + 1
L (g

i − g j)











2

+

*

g j ,
i−1
∑

k= j

tk+1 gk

+

≥ 0 i > j

f i − f j − 1
2L



g i − g j




2
+ L

4











j−1
∑

k=i

tk+1 gk − 1
L (g

i − g j)











2

−

®

g j ,
j−1
∑

k=i

tk+1 gk

¸

≥ 0 i < j

f k − 1
2L ∥g

k∥2 − f ⋆ ≥ 0 k ∈ {0, . . . , N} (4.8)

f ⋆ − f 0 +∆≥ 0


gk




2 − ℓ≥ 0 k ∈ {0, . . . , N} ,

where ℓ is an auxiliary variable to convert problem (4.7) into a quadratic program.
Problem (4.8) is a non-convex quadratic program with quadratic constraints. In
the following proposition, we show that the optimal values of problems (4.5) and
(4.7) (or equivalently problem (4.8)) are the same for step lengths in the interval
(0, 2

L ).

Proposition 4.2. If tk ∈ (0, 2
L ), k ∈ {1, . . . , N}, then problems (4.5) and (4.7) (or

equivalently problem (4.8)) share the same optimal value.

https://s.t.fi/
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Proof. Clearly, problem (4.7) is a relaxation of problem (4.5). Therefore, we only
need to show that, for any feasible solution of (4.7), say {( x̄ i; ḡ i; f̄ i)}N0 , there
exists an L-smooth function f with

f ( x̄ i) = f̄ i , ∇ f ( x̄ i) = ḡ i , 0≤ i ≤ N ,

and minx∈Rn f (x) ≥ f ⋆. The existence such of a function follows from Theorem
2.41, as all assumptions of Theorem 2.41 are satisfied.

To obtain a tractable form of problem (4.8), we relax it to a semidefinite pro-
gram, similar to that of Chapter 3. To this end, we define the (N + 1)× (N + 1)
positive semidefinite matrix G as,

G =







�

g0
�T

...
�

gN
�T







�

g0 . . . gN
�

=









g0




2
. . .




g0, gN
�

...
. . .

...



g0, gN
�

. . .


gN




2






.

We may now formulate the following semidefinite program,

max ℓ

s. t. f i − f j + tr(Ai jG)≥ 0 i ̸= j ∈ {0, . . . , N}

f k − 1
2L Gkk − f ⋆ ≥ 0 k ∈ {0, . . . , N}

f ⋆ − f 1 +∆≥ 0 (4.9)

Gkk − ℓ≥ 0 k ∈ {0, . . . , N}

G ⪰ 0,

where the (N+1)×(N+1)matrices Ai j , i ̸= j ∈ {0, . . . , N}, are formed according to
the constraints (4.8), and G,ℓ, f i , i ∈ {0, . . . , N}, are decision variables. Problem
(4.9) is a relaxation of (4.8), but if n ≥ N + 1 the relaxation is exact, that is the
optimal values of (4.8) and (4.9) are the same. Indeed, if n ≥ N + 1, and G is
a feasible matrix in (4.9), then G is the Gram matrix of N + 1 vectors in Rn, and
these vectors may be identified with g0, . . . , gN ; see Chapter 3 for more details.

4.3 Worst-case convergence rate

In this section, we investigate the convergence rate of gradient method with fixed
step lengths. The next theorem gives the worst-case convergence rate of Algorithm
4.1 to a stationary point of an L-smooth function. The technique of the proof, as

https://s.t.fi/
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is usual for SDP performance estimation, is to use weak duality. In particular, we
will in fact construct a feasible solution to the dual SDP problem of (4.9), and
thus derive an upper bound for problem (4.8).

In practice, this dual feasible solution is constructed in a computer-assisted
manner, by solving the primal and dual SDP problems for different fixed values of
the parameters, and subsequently guessing the values of the dual multipliers. In
the proof of Theorem 4.3, we simply verify that these ‘guesses’ are correct.

Theorem 4.3. Let tk ∈ (0,
p

3
L ) for k ∈ {1, . . . , N}. Consider N iterations of Algo-

rithm 4.1 with step lengths tk (k ∈ {1, . . . , N}), applied to some L-smooth function
f with minimum value f ⋆, with the starting point x0 satisfying f (x0)− f ⋆ ≤∆, for
some given ∆> 0.

Then, if x1, . . . , xN denote the iterates of Algorithm 4.1, one has

min
0≤k≤N



∇ f (xk)


≤

�

4∆
∑N

k=1 min(−L2 t3
k + 4tk,−Lt2

k + 4tk) +
2
L

�1/2

. (4.10)

In particular, if tk =
p

4/3
L for k ∈ {1, . . . , N}, we get

min
0≤k≤N



∇ f (xk)


≤
�

6
p

3L( f (x0)− f ⋆)
8N+3

p
3

�1/2
. (4.11)

Similarly, if tk =
1
L for k ∈ {1, . . . , N}, one has

min
0≤k≤N



∇ f (xk)


≤
�

4L( f (x0)− f ⋆)
3N+2

�1/2
. (4.12)

Proof. Let U denote the square of the right-side of inequality (4.10) and let B = U
∆ .

To establish this bound, we show that U is an upper bound for problem (4.8).
Consider the feasible point

�

{gk; f k}N0 ;ℓ
�

for problem (4.8). Suppose that

αk =
B
2 max {2, tk L + 1} k ∈ {1, . . . , N} .

In addition, we define σ1 and σk, respectively, as follows:

σ1 =
B
4 min

�

−Lt2
1 + 3t1,−L2 t3

1 + 3t1

	

,

σk =
B
4 min

�

−Lt2
k + 3tk + tk−1,−L2 t3

k + 3tk + tk−1

	

k ∈ {2, . . . , N},

and σN+1 = 1−
∑N

k=1σk =
B

4L (2+ LtN ). As tk ∈ (0,
p

3
L ) for k ∈ {1, . . . , N}, the

σk ’s will be non-negative. It is seen that

σk + (2αk − B)
Lt2

k
4 −

Btk
2 =

B
4 (tk + tk−1) k ∈ {2, . . . , N}.
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By using the last equality, one may verify directly through elementary algebra that

ℓ− U +
N+1
∑

k=1

σk

�


gk−1




2 − ℓ
�

+ B
�

f ⋆ − f 0 +∆
�

+ B
�

f N − 1
2L∥g

N∥2 − f ⋆
�

+
N
∑

k=1

αk

�

f k−1 − f k − 1
2L



gk−1 − gk




2
+ L

4



tk gk−1 − 1
L

�

gk−1 − gk
�



2

−



gk, tk gk−1
�

�

+
N
∑

k=1

(αk − B)
�

f k − f k−1 − 1
2L



gk − gk−1




2

+ L
4



−tk gk−1 − 1
L

�

gk − gk−1
�



2 −



gk−1,−tk gk−1
�

�

= −(2α1−B)
4L



g0 − g1




2

+ Bt1
4



g0




2 − Bt1
2




g0, g1
�

+ BtN
4



gN




2

+
N
∑

k=2

�

−(2αk−B)
4L



gk−1 − gk




2
+ B(tk+tk−1)

4



gk−1




2 − Btk
2




gk−1, gk
�

�

=

−
N
∑

k=1

Qk,

where

Qk =

(

B
4

� 1
L − tk

�

gk−1 − gk




2
tk <

1
L

0 tk ≥
1
L .

Since
∑N

k=1 Qk is a non-negative quadratic function and the given dual multipliers
are non-negative, we have ℓ≤ U for any feasible solution of (4.8).

The special step length tk =
p

4/3
L for k ∈ {1, . . . , N} used to obtain (4.11) will

be motivated later in Theorem 4.5. Note that (4.12) gives a formal proof (with a
small improvement) of the bound claimed by Taylor [Tay17, page 190]; see (4.2).

An important question concerning the bound (4.10) is its difference with the
optimal value of (4.5). It is known that the lower bound for Algorithm 4.1 is of the
order Ω

�

1p
N

�

[CGT10, CDHS20]. In what follows, we establish that the bound
(4.10) is exact in some cases.

Proposition 4.4. The value

�

4∆
∑N

k=1 min(−L2 t3
k+4tk ,−Lt2

k+4tk)+
2
L

�1/2

is the optimal value of (4.5) when all step lengths satisfy tk ∈ (0, 1
L ], k ∈ {1, . . . , N}.
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Proof. It suffices for a given N to demonstrate an L-smooth function f and a point
x1 such that

min
0≤k≤N



∇ f (xk)


=

�

4∆
∑N

k=1 min(−L2 t3
k+4tk ,−Lt2

k+4tk)+
2
L

�1/2

. (4.13)

Suppose now that tk ∈ (0, 1
L ], k ∈ {1, . . . , N}, and U denotes the right-hand-side

of equality (4.13). We set tN+1 =
1
L . Let

li = U

� N
∑

k=i

tk+1

�

, f i =∆− U2

4

� i
∑

k=1

−Lt2
k + 4tk

�

i ∈ {0, . . . , N} ,

and lN+2 = 0. By elementary calculus, one can check that the function f : R→ R
given by

f (x) =



























L
2 (x − l0)2 + U(x − l0) + f 0 x ∈

�

1
2 (l0 + l1),∞

�

−L
2 (x − li)2 + U(x − li) + f i x ∈

�

li ,
1
2 (li−1 + li)

�

L
2 (x − li)2 + U(x − li) + f i x ∈

�

1
2 (li + li+1), li

�

L
2 x2 x ∈

�

−∞, 1
2 lN

�

(4.14)

for i ∈ {1, . . . , N}, is L-smooth with the optimal value f ⋆ = 0 and the optimal
solution x⋆ = 0. In addition, we have equality (4.13) for x1 = l1. Indeed,

x i = li i ∈ {0, . . . , N}

∇ f (x i) = U i ∈ {0, . . . , N}

f (x i) = f i i ∈ {0, . . . , N} .

Figure 4.1 represents the plot of function f as constructed in the proof of
Proposition 4.4 for different parameters and the fixed step length tk =

1
L for all k.

Note that, though we have only shown the exactness of the bound (4.10) for
step lengths in the interval (0, 1

L ], we also conjecture that the bound (4.10) is in

fact exact for all step lengths in the interval (0,
p

3
L ).

By minimizing the right-hand-side of (4.10), the next theorem gives the ‘opti-
mal’ step lengths with respect to the bound.

Theorem 4.5. Let f be an L-smooth function. Then the optimal step size for gradient
method with respect to bound (4.10) is given by

tk =

r

4
3

L ∀k ∈ {1, . . . , N} ,
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x

f (x)

x0x1x2x3x4

(a) N = 4, ∆= 2, L = 1

x

f (x)

x0x1x2x3

(b) N = 3, ∆= 4, L = 2

Figure 4.1: Plot of the function f in (4.14) for different parameters and tk =
1
L .

(Dotted lines denote the endpoints of intervals.)
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provided that tk ∈ (0,
p

3
L ) for all k ∈ {1, . . . , N}.

Proof. We minimize the right-hand-side of (4.10), that is

min
tk∈(0,

p
3

L )

�

4∆
∑N

k=1 min(−L2 t3
k+4tk ,−Lt2

k+4tk)+
2
L

�1/2

,

which is equivalent to maximizing

max

t∈
�

0,
p

3
L

�N
H(t) :=

N
∑

k=1

min
�

−L2 t3
k + 4tk,−Lt2

k + 4tk

�

.

Since H is a strictly concave function on
�

0,
p

3
L

�N
and at t̄ given by

t̄k =

r

4
3

L ∀k ∈ {1, . . . , N} ,

we have ∇H ( t̄) = 0, which shows that t̄ is the unique maximum solution of H

over
�

0,
p

3
L

�N
.

The step length 1
L commonly is regarded as the optimal step length in the

literature; see [Nes03, Chapter 1]. Due to the example introduced in (4.14), we
see that the worst-case convergence rate for the step length 1

L cannot be better

than
�

4L( f (x0)− f ⋆)
3N+2

�1/2
. By our analysis, it follows that, for the step length

q

4
3

L , we

get the convergence rate (4.11), which is better than
�

4L( f (x0)− f ⋆)
3N+2

�1/2
, since the

constant in the bound improves from ca. 4
3 ≈ 1.333 to 6

p
3

8 ≈ 1.299.
In the next section we provide an upperbound on the module of smoothness of

a function that is the extension of an L-smooth function over a convex set D ⊆ Rn.

4.4 Extension of L-smooth functions

In this section, we try to extend any L-smooth function on D ⊆ Rn to an L̄-smooth
function on Rn. Results of this type are usually called extension theorems, with
the most famous extension theorem being due to Whitney [Whi34], known as
Whitney extension theorem. This allows us to extend our results to any D ⊆ Rn

rather than Rn.
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LetD ⊆ Rn be a given set and let α : D→ R and ν : D→ Rn. In this section, we
list some key results concerning the existence of an L-smooth function f : Rn→ R
with

f (x) = α(x), ∇ f (x) = ν(x), x ∈ D.

Before we get to the results, we need to introduce the constant Γ (D, (α,ν)),
which is defined as

Γ (D, (α,ν)) = sup
s1,s2∈D,s1 ̸=s2

�Ç

A2
s1s2
+ B2

s1s2
+
�

�As1s2

�

�

�

(4.15)

where

As1s2
=

2 (α (s1)−α (s2)) + 〈ν (s1) + ν (s2) , s2 − s1〉
∥s1 − s2∥

2 , Bs1s2
=
∥ν (s1)− ν (s2)∥
∥s1 − s2∥

.

The following is an extension theorem for L-smooth functions.

Theorem 4.6. [Gru09, Theorem 2.6] If L̄ := Γ (D, (α,ν)) <∞, then there exists
an L̄-smooth function f : Rn→ R with

f (x) = α(x), ∇ f (x) = ν(x) x ∈ D.

One may wonder if there exists an L-smooth function g : Rn → R with L <
Γ (D, (α,ν)) such that

g(x) = α(x), ∇g(x) = ν(x), x ∈ D,

if α is an L-smooth function on D. The answer is negative when D is compact; see
[Gru09, Theorem 3.2].

Under the assumptions of Theorem 4.6, Daniilidis et al. [DHLGL18] introduce
an L-smooth function g : Rn→ R with explicit formula such that

g(x) = α(x), ∇g(x) = ν(x), x ∈ D.

Moreover, L̄ ≤
�

5+
p

29
2

�

L; see [DHLGL18, Theorem 3.1].
In the following proposition, we give a bound for Γ (D, (α,ν)) when D is an

open convex set and we study the extension of an L-smooth function on D.
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Corollary 4.7. Let D be an open convex set. If f : D→ R is an L-smooth function
on D then

Γ (D, ( f ,∇ f ))≤ (
p

2+ 1)L

Proof. Let s1, s2 ∈ D. First we show that Bs1s2
≤ L. To this end, note that

Bs1s2
=
∥∇ f (s1)−∇ f (s2)∥
∥s1 − s2∥

≤
L ∥s1 − s2∥
∥s1 − s2∥

≤ L,

where the last inequality is due to the L-smooth property of f . On the other hand,
by the fundamental theorem of calculus,

f (s1)− f (s2) =

∫ 1

0

〈∇ f (λs1 + (1−λ)s2) , s1 − s2〉 dλ.

It follows that

�

�As1s2

�

�=

�

�

�2
�

∫ 1

0 〈∇ f (λs1 + (1−λ)s2) , s1 − s2〉 dλ
�

+ 〈∇ f (s1) +∇ f (s2) , s2 − s1〉
�

�

�

∥s1 − s2∥
2

=

�

�

�

�

�

�

∫ 1

0 〈∇ f (λs1 + (1−λ)s2)−∇ f (s1) , s1 − s2〉 dλ+
∫ 1

0 〈∇ f (λs1 + (1−λ)s2)−∇ f (s2) , s1 − s2〉 dλ

�

�

�

�

�

�

∥s1 − s2∥
2

≤

∫ 1

0 L(1−λ)∥s1 − s2∥
2 dλ+

∫ 1

0 Lλ∥s1 − s2∥
2 dλ

∥s1 − s2∥
2 = L.

Hence, in view of (4.15), Γ (D, ( f ,∇ f ))≤ (
p

2+1)L, and the proof is complete.

Using Corollary 4.7, we can extend our convergence rate results for L-smooth
functions on open convex sets. In particular, one can derive the following corol-
lary.

Corollary 4.8. If the function f is L-smooth on the open convex set D and the level
set {x : f (x)< f (x0)} is contained in the set D, then the gradient method with
step lengths 1

L has convergence rate of

min
0≤k≤N



∇ f
�

xk
�

≤
�

4(
p

2+1)L( f (x0)− f ⋆)
3N+2

�1/2
.
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Proof. By the descent lemma 2.22, the points generated by the gradient descent
method for step length 1/L lies on the level set {x : f (x)< f (x0)}. By Corollary
4.7, f can be extended to a

�p
2+ 1

�

L-smooth function from Rn to R. Using
Theorem 4.3 the desired results now follow.

We end this chapter by some concluding remarks and a conjecture.

4.5 Concluding remarks

In this chapter, we studied the convergence rate of the gradient method for L-
smooth functions and we provided a new convergence rate when the step lengths
belong to the interval (0,

p
3

L ). Moreover, we have shown that this convergence
rate is tight for step lengths in the interval (0, 1

L ].
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It is not knowledge, but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment.

Carl Friedrich Gauss

5
Conditions for linear convergence of the

gradient method for non-convex
optimization

Preamble

In the previous chapter, we studied convergence rate of the gradient method for
L-smooth functions and derived sub-linear convergence rate for this class of func-
tions. In this chapter, we derive a new linear convergence rate for the gradient
method with fixed step lengths for non-convex smooth optimization problems sat-
isfying the Polyak-Łojasiewicz (PŁ) inequality. We establish that the PŁ inequality
is a necessary and sufficient condition for linear convergence to the optimal value
for this class of problems. We list some related classes of functions for which
the gradient method may enjoy linear convergence rate. Moreover, we investi-
gate their relationship with the PŁ inequality. This chapter is based on the paper
[AdKZ23a].

61
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5.1 Introduction

We consider the gradient method for the unconstrained optimization problem

f ⋆ := inf
x∈Rn

f (x), (5.1)

where f : Rn → R is differentiable, and f ⋆ is finite. The gradient method with
fixed step lengths may be described as follows, which is the same as Algorithm
4.1.

Algorithm 5.1 Gradient method with fixed step lengths

Set N and {tk}Nk=1 (step lengths) and pick x0 ∈ Rn.
For k = 1, 2, . . . , N perform the following step:

1. xk = xk−1 − tk∇ f (xk−1)

In addition, we assume that f has a maximum curvature L ∈ (0,∞) and a
minimum curvature µ ∈ (−∞, L). Recall that f has a maximum curvature L if
L
2∥.∥

2 − f is convex. Similarly, f has a minimum curvature µ if f − µ2∥.∥
2 is con-

vex. We denote smooth functions with curvature belonging to the interval [µ, L]
by Hµ,L(Rn). The class Hµ,L(Rn) includes all smooth functions with Lipschitz gra-
dient (note that µ≥ 0 corresponds to convexity). Indeed, f is L-smooth on Rn if
and only if f has a maximum and minimum curvature L̄ > 0 and µ̄, respectively,
with max( L̄, |µ̄|) ≤ L; recall the discussion before Theorem 2.42. This class of
functions is broad and appears naturally in many models in machine learning, see
[DD19] and the references therein.

For f ∈Hµ,L(Rn), we have the following inequalities for x , y ∈ Rn

f (y)≤ f (x) + 〈∇ f (x), y − x〉+ L
2∥y − x∥2, (5.2)

f (y)≥ f (x) + 〈∇ f (x), y − x〉+ µ2∥y − x∥2; (5.3)

see Lemma 2.5 in [RGP22], where (5.2) and (5.3) are similar to Lemma 2.22 and
Definition 2.25, respectively.

It is known that the number of iterations of first-order methods, which is
needed to be performed for obtaining an ε-stationary1 point, is of the orderΩ

�

ε−2
�

for L-smooth functions [CDHS20]. Hence, it is of interest to investigate the classes
of functions for which the gradient method enjoys linear convergence rate. This
subject has been investigated by some scholars and some classes of functions

1A point x is called ε-stationary if ∥∇ f (x)∥ ≤ ε.
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have been introduced where linear convergence is possible; see [HSS20, KNS16,
HSL21, DDG+22] and the references therein. This includes the class of functions
satisfying the Polyak-Łojasiewicz (PŁ) inequality [KNS16, Pol63].

Definition 5.1. A function f is said to satisfy the PŁ inequality on X ⊆ Rn, where
x⋆ ∈ X is a minimizer of f over Rn, if there exists µp > 0 such that

f (x)− f ⋆ ≤ 1
2µp
∥∇ f (x)∥2, ∀x ∈ X. (5.4)

Note that the PŁ inequality is also known as gradient dominated; see [Nes18,
Definition 4.1.3]. Strongly convex functions satisfy the PŁ inequality, but some
classes of non-convex functions also fulfill this inequality. For instance, the fol-
lowing proposition provides an example, which is a slightly more general case
than the example presented by [Nes18, Example 4.1.3].

Proposition 5.2. Consider a differentiable function G : Rn → Rm with m ≤ n and
let JG(x) be the Jacobian matrix of G at x. If

inf
x∈X
λmin

�

JG(x)JG(x)
T
�

= α > 0,

for some X ⊆ Rn, then the function f (x) = ∥G(x)∥2 fulfils the PŁ inequality (5.4)
with constant µp = 2α.

Proof. Let f (x) =
∑m

j=1 G2
j (x) and

�

J T
G (x)

�

i j =
∂
∂ x i

G j(x) where i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}. Moreover,

∇ f (x) = 2J T
G (x)G(x) ∈ R

n.

Assume that JG(x)J T
G (x)⪰ αIm×m for all x ∈ X and some α > 0. Then,

1
4
∥∇ f (x)∥2 = GT (x)JG(x)J

T
G (x)G(x)≥ α∥JG(x)∥2 = α f (x).

Thus,

f (x)− f ⋆ ≤
1

4α
∥∇ f (x)∥2 − f ⋆ ≤

1
4α
∥∇ f (x)∥2,

where the last inequality is due to f ⋆ ≥ 0.

In other words, nonlinear least squares problems sometimes correspond to
instances of (5.1) where the objective satisfies the PŁ inequality.

The following classical theorem provides a linear convergence rate for Algo-
rithm 5.1 under the PŁ inequality.
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Theorem 5.3. [Pol63, Theorem 4] Let f be L-smooth and let f satisfy PŁ inequality
on X = {x : f (x) ≤ f (x0)}. If t1 ∈ (0, 2

L ) and x1 is generated by Algorithm 5.1,
then

f (x1)− f ⋆ ≤
�

1− t1µp(2− t1 L)
� �

f (x0)− f ⋆
�

. (5.5)

In particular, if t1 =
1
L , we have

f (x1)− f ⋆ ≤ (1− µp
L )
�

f (x0)− f ⋆
�

. (5.6)

In this chapter we will sharpen this bound; see Theorem 5.4. Under the as-
sumptions of Theorem 5.3, Karimi et al. [KNS16] established linear convergence
rates for some other methods including the randomized coordinate descent. We
refer the interested reader to the recent survey [DDG+22] for more details on the
convergence of algorithms under the PŁ inequality.

In this chapter, we study the convergence rate of Algorithm 5.1 by using per-
formance estimation; see Chapter 3.

The rest of the chapter is organized as follows. In Section 5.2, we consider
problem (5.1) when f satisfies the PŁ inequality. We derive a new linear conver-
gence rate for Algorithm 5.1 by using performance estimation. Furthermore, we
provide an optimal step length with respect to the given bound. We also show
that the PŁ inequality is necessary and sufficient for linear convergence, in a well-
defined sense. Section 5.3 lists some other situations where Algorithm 5.1 is lin-
early convergent. Moreover, we study the relationships between these situations.
Finally, we conclude the chapter with some remarks and questions for future re-
search.

5.2 Linear convergence under the PŁ inequality

In this section we study linear convergence of the gradient descent for f ∈Hµ,L (Rn)
under the PŁ inequality. It is readily seen that the PŁ inequality implies that ev-
ery stationary point is a global minimum on X . By virtue of the descent lemma
[Nes18, Page 29] and Lemma 2.22, we have

f (x)− f ⋆ ≥ 1
2L∥∇ f (x)∥2, ∀x ∈ Rn. (5.7)

Hence, µp can only take values in (0, L] by (5.7). On the other hand, if f
in Hµ,L (Rn) we may assume without loss of generality µ ≤ µp where µ is the
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minimum curvature parameter. The inequality is trivial if µ≤ 0, and we therefore
assume that µ > 0. By taking the minimum with respect to y from both side of
inequality (5.3), we get

f (x)− f ⋆ ≤ 1
2µ∥∇ f (x)∥2.

Hence, one may assume without loss of generality µp =max{µ,µp} in inequality
(5.4).

In what follows, we employ performance estimation to get a new bound under
the assumptions of Theorem 5.3. In this setting, the worst-case convergence rate
of Algorithm 5.1 may be cast as the following optimization problem,

max
f (x1)− f ⋆

f (x0)− f ⋆

x1 is generated by Algorithm 5.1 w.r.t. f , x0 (5.8)

f (x)≥ f ⋆ ∀x ∈ Rn

f (x)− f ⋆ ≤ 1
2µp
∥∇ f (x)∥2, ∀x ∈ X

f ∈Hµ,L(Rn)

x0 ∈ Rn.

In problem (5.8), f and x0 are decision variables and X = {x : f (x) ≤ f (x0)}.
We may replace the infinite dimensional condition f ∈ Hµ,L(Rn) by a finite set
of constraints, by using interpolation. Theorem 2.42 gives some necessary and
sufficient conditions for the interpolation of given data by some f ∈Hµ,L(Rn).

It is worth noting that Theorem 2.42 addresses non-smooth functions as well.
In fact, L =∞ covers non-smooth functions. Note that we only investigate the
smooth case in this chapter, that is L ∈ (0,∞) and µ ∈ (−∞, 0].

By Theorem 2.42, problem (5.8) may be relaxed as follows,

max
f 1 − f ⋆

f 0 − f ⋆

s. t. 1

2(1−
µ
L )

�

1
L



g i − g j




2
+µ



x i − x j




2 − 2µ
L




g j − g i , x j − x i
�

�

≤

f i − f j −



g j , x i − x j
�

i, j ∈ {0, 1}

x1 = x0 − t1 g0 (5.9)

f k ≥ f ⋆ k ∈ {0,1}

f k − f ⋆ ≤ 1
2µp
∥gk∥2, k ∈ {0,1}.
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As we replace the constraint f (x)− f ⋆ ≤ 1
2µp
∥∇ f (x)∥2 for each x ∈ X by f 0− f ⋆ ≤

1
2µp
∥g0∥2 and f 1− f ⋆ ≤ 1

2µp
∥g1∥2, problem (5.9) is a relaxation of problem (5.8).

By using the constraint x1 = x0 − t1 g0, problem (5.9) may be reformulated as,

max
f 1 − f ⋆

f 0 − f ⋆

s. t.
1

2(L −µ)
�

∥g1∥2 + (1+µLt2
1 − 2µt1)∥g0∥2 + 2(µt1 − 1)〈g0, g1〉

�

−

f 1 + f 0 −



g0, t1 g0
�

≤ 0
1

2(L −µ)
�

∥g1∥2 + (1+µLt2
1 − 2µt1)∥g0∥2 + 2(µt1 − 1)〈g0, g1〉

�

−

f 0 + f 1 +



g1, t1 g0
�

≤ 0 (5.10)

f ⋆ − f k ≤ 0 k ∈ {0,1}

f k − f ⋆ − 1
2µp
∥gk∥2 ≤ 0, k ∈ {0,1} .

By using the Gram matrix,

X =

�

(g0)T

(g1)T

�

�

g0 g1
�

=

�

∥g0∥1 〈g0, g1〉
〈g0, g1〉 ∥g1∥2

�

,

problem (5.10) can be relaxed as follows,

max
f 1 − f ⋆

f 0 − f ⋆

s. t. tr(A1X )− f 1 + f 0 ≤ 0

tr(A2X )− f 0 + f 1 ≤ 0 (5.11)

f 0 − f ⋆ + tr(A3X )≤ 0

f 1 − f ⋆ + tr(A4X )≤ 0

f 0, f 1 ≥ f ⋆, X ⪰ 0,

where

A1 =

 

1+µLt2
1−2µt1

2(L−µ) − t1
µt1−1
2(L−µ)

µt1−1
2(L−µ)

1
2(L−µ)

!

A2 =

 

1+µLt2
1−2µt1

2(L−µ)
µt1−1
2(L−µ) +

t1
2

µt1−1
2(L−µ) +

t1
2

1
2(L−µ)

!

A3 =

�−1
µ2

p
0

0 0

�

A4 =

�

0 0
0 −1

µ2
p

�

.
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In addition, X , f 0, f 1 are decision variables in this formulation. In the next theo-
rem, we obtain an upper bound for problem (5.10) by using weak duality. This
bound gives a new convergence rate for Algorithm 5.1 for a wide variety of func-
tions.

Theorem 5.4. Let f ∈ Hµ,L(Rn) with L ∈ (0,∞),µ ∈ (−∞, 0] and let f satisfy
the PŁ inequality on X = {x : f (x) ≤ f (x0)}. Suppose that x1 is generated by
Algorithm 5.1.

i) If t1 ∈
�

0, 1
L

�

, then

f (x1)− f ⋆

f (x0)− f ⋆
≤

 

µp (1− Lt1) +
q

(L −µ)
�

µ−µp

�

(2− Lt1)µp t1 + (L −µ)
2

L −µ+µp

!2

.

ii) If t1 ∈
�

1
L , 3
µ+L+
p
µ2−Lµ+L2

�

, then

f (x1)− f ⋆

f (x0)− f ⋆
≤

�

(Lt1 − 2)(µt1 − 2)µp t1
�

L +µ−µp

�

t1 − 2
+ 1

�

.

iii) If t1 ∈
�

3
µ+L+
p
µ2−Lµ+L2

, 2
L

�

, then

f (x1)− f ⋆

f (x0)− f ⋆
≤

(Lt1 − 1)2

(Lt1 − 1)2 +µp t1(2− Lt1)
.

In particular, if t1 =
1
L and µ= −L, we have

f (x1)− f ⋆ ≤
�

2L − 2µp

2L +µp

�

�

f (x0)− f ⋆
�

. (5.12)

Proof. First we consider t1 ∈
�

0, 1
L

�

. Let

b1 =
(L −µ)

�

α+µp (1− Lt1)
�

α
�

L −µ+µp

�

b2 = b1 −
�

α

L −µ
b1

�2

,
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where
α=

Ç

(L −µ)
�

µp t1

�

µp −µ
�

(Lt1 − 2) + (L −µ)
�

.

It is readily seen that b1, b2 ≥ 0. Furthermore,

f 1 − f ⋆ − (b1 − b2)
�

f 0 − f ⋆
�

− b2

�

−
1

2µp



g0




2
+ f 0 − f ⋆

�

− (1− b1)

�

−
1

2µp



g1




2
+ f 1 − f ⋆

�

− b1

�

1
2(L −µ)

�

∥g1∥2+

(1+µLt2
1 − 2µt1)∥g0∥2 + 2(µt1 − 1)〈g0, g1〉

�

− f 0 + f 1 +



g1, t1 g0
�

�

=

−
1− Lt1

2α









αb1

L −µ
g0 − g1









2

≤ 0.

Therefore, for any feasible solution of problem (5.10), we have

f (x1)− f ⋆

f (x0)− f ⋆
≤

 

µp (1− Lt1) +
q

(L −µ)
�

µ−µp

�

(2− Lt1)µp t1 + (L −µ)
2

L −µ+µp

!2

,

and the proof of this part is complete. Now, we consider the case that

t1 ∈
�

1
L , 3
µ+L+
p
µ2−Lµ+L2

�

. Suppose that

a1 =
µt1 − 1

�

L +µ−µp

�

t1 − 2
, a2 =

1− Lt1
�

L +µ−µp

�

t1 − 2
,

a3 = −
((Lt1 − 2)(µt1 − 2)− 1)µp t1

�

L +µ−µp

�

t1 − 2
, a4 = −

µp t1
�

L +µ−µp

�

t1 − 2
.

It is readily seen that a1, a2, a3, a4 ≥ 0. Furthermore,

f 1 − f ⋆ −
�

1− a3 − a4

� �

f 0 − f ⋆
�

− a3

�

−
1

2µp



g0




2
+ f 0 − f ⋆

�

−

a4

�

−
1

2µp



g1




2
+ f 1 − f ⋆

�

− a1

�

1
2(L −µ)

�

∥g1∥2 + (1+µLt2
1 − 2µt1)∥g0∥2+

2(µt1 − 1)〈g0, g1〉
�

− f 0 + f 1 +



g1, t1 g0
�

�

− a2

�

1
2(L −µ)

�

∥g1∥2+

(1+µLt2
1 − 2µt1)∥g0∥2 + 2(µt1 − 1)〈g0, g1〉

�

− f 1 + f 0 −



g0, t1 g0
�

�

= 0.
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Therefore, for any feasible solution of problem (5.10), we have

f (x1)− f ⋆ −

�

Lµpµt3
1 − 2µp (L +µ) t2

1 + 4µp t1
�

L +µ−µp

�

t1 − 2
+ 1

�

�

f (x0)− f ⋆
�

≤ 0.

Now, we prove the last part. Assume that t1 ∈
�

3
µ+L+
p
µ2−Lµ+L2

, 2
L

�

. With some

algebra, one can show

f 1 − f ⋆ −
�

(Lt1 − 1)2

β

�

�

f 0 − f ⋆
�

−
�

µp t1(2− Lt1)

β

��

−
1

2µp



g1




2
+ f 1 − f ⋆

�

−
�

(Lt1 − 1)(2− Lt1)
β

��

1
2(L −µ)

�

∥g1∥2 + (1+µLt2
1 − 2µt1)∥g0∥2 + 2(µt1 − 1)〈g0, g1〉

�

−

f 1 + f 0 −



g0, t1 g0
�

�

−
�

Lt1 − 1
β

��

1
2(L −µ)

�

∥g1∥2 + (1+µLt2
1 − 2µt1)∥g0∥2+

2(µt1 − 1)〈g0, g1〉
�

− f 0 + f 1 +



g1, t1 g0
�

�

=

−
(1− Lt1)

�

Lµt2 − 2(µ+ L)t + 3
�

2β(L −µ)









p

Lt1 − 1g0 + 1p
Lt1−1

g1









2

≤ 0,

where

β = (Lt1 − 1)2 +µp t1(2− Lt1).

The rest of the proof is similar to that of the former cases.

As the expressions provided in Theorem 5.4 are complicated here we provide
an example for some parameters. Let L = 10, µ = −L = −10 and µp = 1. Then
part i) of Theorem 5.4 is given by t1 ∈ (0, 0.1) and

f (x1)− f ⋆

f (x0)− f ⋆
≤

1
441

�

1− 10t1 +
Æ

440t1(5t1 − 1) + 400
�2

.

One may wonder how we obtain Lagrange multipliers (dual variables) in The-
orem 5.4. The multipliers are computed by solving the dual of problem (5.11)
by hand; see Chapter 3 for more discussion on solving PEP. Furthermore, Theo-
rem 5.4 provides a tighter bound in comparison with the convergence rate given
in Theorem 5.3 for L-smooth functions with t1 ∈ (0, 2

L ). To show this, we need
investigate three subintervals:

i) Suppose that t1 ∈
�

0, 1
L

�

. As 1− Lt1 ≤ 0,
�

µp(1−Lt1)+
q

2L(−L−µp)(2−Lt1)µp t1+4L2

2L+µp

�2

≤

4L2+2Lµp t1(L+µp)(Lt1−2)+(µp−Lµp t1)2

(2L+µp)2
≤ 1− t1µp(2− t1 L),



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

70

where the last inequality follows from non-positivity of the quadratic func-
tion T1(t1) = −Lt2

1

�

2L2 + Lµp +µ2
p

�

+ 2t1

�

2L2 + Lµp +µ2
p

�

− 4L on the
given interval.

ii) Let t1 ∈
�

1
L ,
p

3
L

�

. Since µp ≤ L and (2− Lt1)> 0, we have

1≤ Lt1+2
µp t1+2 ⇒ 1− (2−Lt1)(Lt1+2)µp t1

µp t1+2 ≤ 1− t1µp(2− Lt1).

iii) Assume that t1 ∈ (
p

3
L , 2

L ). It is readily verified that the quadratic function
T2(t1) = (Lt1−1)2+µp t1(2− Lt1)−1 is non-positive on the given interval.
Hence,

(Lt1−1)2

(Lt1−1)2+µp t1(2−Lt1)
= 1− µp t1(2−Lt1)

(Lt1−1)2+µp t1(2−Lt1)
≤ 1− t1µp(2− Lt1).

Therefore, for t1 ∈
�

0, 2
L

�

the bound provided by Theorem 5.4 is tighter than that
given by Theorem 5.3.

In most problems, the smoothness constant, L, is unknown. By using (5.2),
any estimation of the smoothness constant L, say L̃, should satisfy the following
inequality,

f
�

x − 1
L̃
∇ f (x)

�

≤ f (x)− 1
2 L̃
∥∇ f (x)∥2.

Thus one may try to obtain a suitable estimate by searching for a sufficiently large
value of L̃ that satisfies this inequality. This technique is due to Nesterov; see
[Nes13, Section 3] for details.

The next proposition gives the optimal step length with respect to the worst-
case convergence rate.

Proposition 5.5. Let f ∈Hµ,L(Rn) with L ∈ (0,∞),µ ∈ (−∞, 0] and let f satisfy
the PŁ inequality on X = {x : f (x) ≤ f (x0)}. Suppose that r(t) = Lµ(L + µ −
µp)t3−

�

L2 −µp(L +µ) + 5Lµ+µ2
�

t2+4(L+µ)t −4 and t̄ is the unique root of

r in
�

1
L , 3
µ+L+
p
µ2−Lµ+L2

�

if it exists. Then t⋆ given by

t⋆ =







t̄ if t̄ exists
3

µ+L+
p
µ2−Lµ+L2

otherwise,

is the optimal step length for Algorithm 5.1 with respect to the worst-case convergence
rate.



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

Chapter 5. Linear convergence of the gradient method 71

Proof. To obtain an optimal step length, we need to solve the optimization prob-
lem

min
t∈(0,

2
L )

h(t),

where h is given by

h(t) =























�

µp(1−Lt)+
q

(L−µ)(µ−µp)(2−Lt)µp t+(L−µ)2

L−µ+µp

�2

t ∈
�

0, 1
L

�

(Lt−2)(µt−2)µp t

(L+µ−µp)t−2
+ 1 t ∈

�

1
L , 3

µ+L+
p
µ2−Lµ+L2

�

(Lt−1)2

(Lt−1)2+(2−Lt)µp t t ∈
�

3

µ+L+
p
µ2−Lµ+L2

, 2
L

�

.

It is easily seen that h is decreasing on
�

0, 1
L

�

and is increasing on
�

3
µ+L+
p
µ2−Lµ+L2

, 2
L

�

. Hence, we need investigate the closed interval
�

1
L , 3
µ+L+
p
µ2−Lµ+L2

�

. We will show that h is convex on the interval in ques-

tion. First, we consider the case L + µ − µp ≤ 0. Let p(t) = µt−2

(L+µ−µp)t−2
and

q(t) = (Lt −2)µp t. By some algebra, one can show the following inequalities for

t ∈
�

1
L , 3
µ+L+
p
µ2−Lµ+L2

�

:

p(t)≥ 0 q(t)≤ 0

p′(t)≥ 0 q′(t)≥ 0

p′′(t)≤ 0 q′′(t)≥ 0.

Hence, the convexity of h follows from h′′ = p′′q+2p′q′+pq′′. Now, we investigate
the case that L + µ− µp > 0. Suppose that p(t) =

µp t

(L+µ−µp)t−2
and q(t) = (Lt −

2)(µt − 2). For these functions, we have the following inequalities

p(t)≤ 0 q(t)≥ 0

p′(t)≤ 0 q′(t)≤ 0

p′′(t)≥ 0 q′′(t)≤ 0,

which analogous to the former case one can infer the convexity of h on the given

interval. Hence, if h has a root in
�

1
L , 3
µ+L+
p
µ2−Lµ+L2

�

, it will be the minimum.

Otherwise, the point t⋆ = 3
µ+L+
p
µ2−Lµ+L2

will be the minimum. This follows

from the point that h′( 1
L ) =

2Lµp(µp−L)
(L+µp−µ)2

≤ 0 and the convexity of h on the interval
in question.



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

72

Thanks to Proposition 5.5, the following corollary gives the optimal step length
for L-smooth convex functions satisfying the PŁ inequality.

Corollary 5.6. If f is an L-smooth convex function satisfying the PŁ inequality,
then the optimal step length with respect to the worst-case convergence rate given by

Theorem 5.4 is min
§

2
L+
p

Lµp
, 3

2L

ª

.

The constant 2
L+
p

Lµp
also appears in the the fast gradient algorithm introduced

in [NNG19] for L-smooth convex functions which are (1,µs)-quasar-convex, see
Definition 5.14. By Theorem 5.16, (1,µs)-quasar-convexity implies the PŁ in-
equality with the same constant. Algorithm 5.2 describes the method in question.

Algorithm 5.2 Fast gradient method

Pick x0 ∈ Rn, set N and y0 = x0.
For k = 1, 2, . . . , N perform the following step:

1. yk = xk−1 − 1
L∇ f (xk−1)

2. xk = yk +
p

L−
p
µpp

L+
p
µp

�

yk − yk−1
�

One can verify that Algorithm 5.2, at the first iteration, generates x1 = x0 −
2

L+
p

Lµp
∇ f (x0).

A more general form of the PŁ inequality, called the Łojasiewicz inequality, may
be written as

( f (x)− f ⋆)2θ ≤ 1
2µp
∥∇ f (x)∥2, ∀x ∈ X , (5.13)

where θ ∈ (0, 1). As an example for a function with θ > 1
2 one can easily see

that the function f (x) = x4 has θ = 3
4 with µp = 8. It is known that when

θ ∈ (0, 1
2] some algorithms, including Algorithm 5.1, are linearly convergent;

see [AB09, ABRS10]. In the next theorem, we show that for functions with finite
maximum and minimum curvature the Łojasiewicz inequality cannot hold for θ ∈
(0, 1

2).

Theorem 5.7. Let f ∈ Hµ,L(Rn) be a non-constant function. If f satisfies the Ło-
jasiewicz inequality on X = {x : f (x)≤ f (x0)}, then θ ≥ 1

2 .

Proof. To the contrary, assume that θ ∈ (0, 1
2). Without loss of generality, we

may assume that µ = −L. It is known that Algorithm 5.1 generates a decreasing
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sequence { f (xk)} and it is convergent, that is ∥∇ f (xk)∥ → 0; see [Nes18, page
28]. Furthermore, (5.13) implies that f (xk) → f ⋆. Without loss of generality,
we may assume that f ⋆ = 0. First, we investigate the case that f (x0) = 1. The
semidefinite programming problem corresponding to performance estimation in
this case may be formulated as follows,

max f 1

s. t. tr(A1X )− f 1 + 1≤ 0

tr(A2X )− 1+ f 1 ≤ 0 (5.14)

1+ tr(A3X )≤ 0

( f 1)2θ + tr(A4X )≤ 0

f 1 ≥ 0, X ⪰ 0.

Since Algorithm 5.1 is a monotone method, f 1 can take value in [0,1]. In addi-
tion, we have f 1 ≤ ( f 1)2θ on this interval. Hence, by using Theorem 5.4, we get
the following bound,

f 1 ≤
2L − 2µp

2L +µp
.

Now, suppose that f (x0) = f 0 > 0. Consider the function h : Rn → R given by
h(x) = f (x)

f 0 . It is seen that h is L
f 0 -smooth and

h(x)2θ ≤ 1
2µp( f 0)2θ−2 ∥∇h(x)∥2, ∀x ∈ X .

As Algorithm 5.1 generates the same x1 for both functions, by using the first part,
we obtain

f (x1)
f (x0)

≤
2L( f 0)−1 − 2µp( f 0)2θ−2

2L( f 0)−1 +µp( f 0)2θ−2
=

2L − 2µp( f 0)2θ−1

2L +µp( f 0)2θ−1
.

For f 0 sufficiently small, we have
2L−2µp( f 0)2θ−1

2L+µp( f 0)2θ−1 < 0, which contradicts f ⋆ ≥ 0 and

the proof is complete.

Necoara et al. gave necessary and sufficient conditions for linear convergence
of the gradient method with constant step lengths when f is a smooth convex
function; see [NNG19, Theorem 13]. Indeed, the theorem says that Algorithm
5.1 is linearly convergent if and only if f has a quadratic functional growth on
{x : f (x) ≤ f (x0)}; see Definition 5.11. However, this theorem does not hold
necessarily for non-convex functions. The next theorem provides necessary and
sufficient conditions for linear convergence of Algorithm 5.1.
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Theorem 5.8. Let f ∈Hµ,L(Rn). Algorithm 5.1 is linearly convergent to the optimal
value if and only if f satisfies PŁ inequality on {x : f (x)≤ f (x0)}.

Proof. Let x̄ ∈ {x : f (x) ≤ f (x0)}. Linear convergence implies the existence of
γ ∈ [0,1) with

f ( x̂)− f ⋆ ≤ γ ( f ( x̄)− f ⋆) , (5.15)

where x̂ = x̄ − 1
L∇ f ( x̄). By (5.3), we have f ( x̄) − f ( x̂) ≤ 2L−µ

2L2 ∥∇ f ( x̄)∥2. By
using this inequality with (5.15), we get

f ( x̄)− f ⋆ ≤ 1
1−γ ( f ( x̄)− f ( x̂))≤ 2L−µ

2L2(1−γ)∥∇ f ( x̄)∥2,

which shows that f satisfies PŁ inequality on {x : f (x) ≤ f (x0)}. The other
implication follows from Theorem 5.4.

5.3 The PŁ inequality: relation to some classes of func-
tions

In this section, we study some classes of functions for which Algorithm 5.1 may
be linearly convergent. We establish that these classes of functions satisfy the PŁ
inequality under mild assumptions, and we infer the linear convergence by using
Theorem 5.4. Moreover, one can get convergence rates by applying performance
estimation.

Throughout the section, we denote the optimal solution set of problem (5.1)
by X ⋆ and we assume that X ⋆ is non-empty. We denote the distance function to
X ⋆ by dX ⋆(x) := infy∈X ⋆ ∥y − x∥. The set-valued mapping ΠX ⋆(x) stands for the
projection of x on X ⋆, that is, ΠX ⋆(x) = {y : ∥y − x∥ = dX ⋆(x)}. Note that, as X ⋆

is non-empty closed set, ΠX ⋆(x) exists and is well-defined.

Definition 5.9. Let µg > 0. A function f has a quadratic gradient growth on
X ⊆ Rn if

〈∇ f (x), x − x⋆〉 ≥ µg d2
X ⋆(x), ∀x ∈ X , (5.16)

for some x⋆ ∈ ΠX ⋆(x).

Note that inequality (5.2) implies that µg ≤ L. Hu et al. [HSL21] investigated
the convergence rate {xk} when f satisfies (5.16) and X ⋆ is singleton. To the
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best knowledge of me, there is no convergence rate result in terms of { f (xk)}
for functions with a quadratic gradient growth. The next proposition states that
quadratic gradient growth property implies the PŁ inequality.

Proposition 5.10. Let f ∈ Hµ,L(Rn). If f has a quadratic gradient growth on

X ⊆ Rn with µg > 0, then f satisfies the PŁ inequality with µp =
µ2

g
L .

Proof. Suppose that x⋆ ∈ ΠX ⋆(x) satisfies (5.16). By the Cauchy-Schwarz inequal-
ity, we have

µg∥x − x⋆∥ ≤ ∥∇ f (x)∥. (5.17)

On the other hand, (5.2) implies that

f (x)≤ f (x⋆) + L
2∥x − x⋆∥2. (5.18)

The PŁ inequality follows from (5.17) and (5.18).

By Proposition 5.10 and Theorem 5.4, one can infer the linear convergence of
Algorithm 5.1 when f has a quadratic gradient growth on X = {x : f (x)≤ f (x0)}.
Indeed, one can derive the following bound if t1 =

1
L and µ= −L,

f (x1)− f ⋆ ≤

�

2L2 − 2µ2
g

2L2 +µ2
g

�

�

f (x0)− f ⋆
�

. (5.19)

Nevertheless, by using the performance estimation method, one can derive a bet-
ter bound than the bound given by (5.19). The performance estimation problem
for t1 =

1
L in this case may be formulated as

max
f 1 − f ⋆

f 0 − f ⋆

s. t. {xk, gk, f k} ∪ {yk, 0, f ⋆} satisfy interpolation constraints (2.8) for k ∈ {0, 1}

x1 = x0 − 1
L g0 (5.20)

f k ≥ f ⋆ k ∈ {0,1}

〈gk, xk − yk〉 ≥ µg∥yk − xk∥2, k ∈ {0, 1}

∥x0 − y0∥2 ≤ ∥x0 − y1∥2

∥x1 − y1∥2 ≤ ∥x1 − y0∥2.

Analogous to Section 5.2, one can obtain an upper bound for problem (5.20)
by solving a semidefinite program. Our numerical results show that the bounds
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Figure 5.1: Convergence rate computed by performance estimation (red line) and
the bound given by (5.19) (blue line) for

µg
L ∈ (0,1).

generated by performance estimation are tighter than bound (5.19); see Figure
5.1. We do not have a closed-form bound on the optimal value of (5.20), though.

Definition 5.11. [NNG19, Definition 4], [Nes18, Definition 4.1.2] Let µq > 0. A
function f has a quadratic functional growth on X ⊆ Rn if

µq
2 d2

X ⋆(x)≤ f (x)− f ⋆, ∀x ∈ X . (5.21)

It is readily seen that, contrary to the previous situations, the quadratic func-
tional growth property does not necessarily imply that each stationary point is a
global optimal solution. The next theorem investigates the relationship between
quadratic functional growth property and other notions.

Theorem 5.12. Let f ∈ Hµ,L(Rn) and let X = {x : f (x) ≤ f (x0)}. We have the
following implications:

i) (5.4)⇒ (5.21) with µq = µp.

ii) If µq >
−µL
L−µ , then (5.21)⇒ (5.16) with µg =

µq
2 (1−

µ
L ) +

µ
2 .

iii) If
f (x)− f (x⋆)≤ 〈∇ f (x), x − x⋆〉, ∀x ∈ X ,

for some x⋆ ∈ ΠX ⋆(x) then (5.21)⇒ (5.16) with µg =
µq
2 .
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Proof. One can establish i) similarly to the proof of [KNS16, Theorem 2]. Con-
sider part ii). Let x ∈ X and x⋆ ∈ ΠX ⋆(x) with dX ⋆(x) = ∥x − x⋆∥. By (2.7), we
have

f (x)− f (x⋆)≤ −1
2(L−µ)∥∇ f (x)∥2 − µL

2(L−µ)∥x − x⋆∥2 + L
L−µ〈∇ f (x), x − x⋆〉.

As
µq
2 ∥x − x⋆∥2 ≤ f (x)− f (x⋆), we get

�µq
2 (1−

µ
L ) +

µ
2

�

∥x − x⋆∥2 ≤ 〈∇ f (x), x − x⋆〉,

which establishes the desired inequality. Part iii) is proved similarly to the former
case.

By Theorem 5.4, it is clear that Algorithm 5.1 enjoys linear convergence rate
if f has a quadratic gradient growth on X = {x : f (x) ≤ f (x0)} and if f satisfies
assumptions ii) or iii) in Theorem 5.12. For instance, if µ = −L and µq ∈ (

L
2 , L),

one can derive the following convergence rate for Algorithm 5.1 for fixed step
length tk =

1
L , k ∈ {1, ..., N},

f (xN )− f (x0)≤

�

2L2 − 2(µq −
L
2 )

2

2L2 + (µq −
L
2 )2

�N
�

f (x0)− f ⋆
�

. (5.22)

It is interesting to compare the convergence rate (5.22) to the convergence rate
obtained by using the performance estimation framework. In this case, the per-
formance estimation problem may be cast as follows,

max
f N − f ⋆

f 0 − f ⋆

s. t. {xk, gk, f k} ∪ {yk, 0, f ⋆} satisfy inequality (2.8) for k ∈ {0, ..., N}

xk = xk−1 − 1
L gk−1, k ∈ {1, ..., N} (5.23)

f k ≥ f ⋆ k ∈ {0, ..., N}

f k − f ⋆ ≥ µq
2 ∥x

k − yk∥2, k ∈ {0, ..., N}

∥xk − yk∥2 ≤ ∥xk − yk′∥2, k ∈ {0, ..., N}, k′ ∈ {0, ..., N}.

Since xk = xk−1 − 1
L gk−1, we get xk = x0 − 1

L

∑k−1
l=0 g l . Hence, problem (5.23)
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may be reformulated as follows,

max
f N − f ⋆

f 0 − f ⋆

s. t. {x0 − 1
L

k−2
∑

l=0

g l , gk, f k} ∪ {yk, 0, f ⋆} satisfy interpolation constraints (2.8)

f k ≥ f ⋆ k ∈ {1, ..., N} (5.24)

f k − f ⋆ ≥ µq
2 ∥x

0 − 1
L

k−2
∑

l=1

g l − yk∥2, k ∈ {0, ..., N}

∥x0 − 1
L

k−2
∑

l=0

g l − yk∥2 ≤ ∥x0 − 1
L

k−2
∑

l=0

g l − yk′∥2, k, k′ ∈ {0, ..., N}.

The next theorem provides an upper bound for problem (5.24) by using weak
duality.

Theorem 5.13. Let f ∈ H−L,L(Rn) and let f have a quadratic functional growth
on X = {x : f (x)≤ f (x0)} with µq ∈ (

L
2 , L). If tk =

1
L , k ∈ {1, ..., N}, then we have

the following convergence rate for Algorithm 5.1,

f (xN )− f ⋆ ≤ L
µq

�

2− 2µq
L

�N �
f (x0)− f ⋆

�

. (5.25)

Proof. The proof is analogous to that of Theorem 5.4. Without loss of generality,
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we may assume that f ⋆ = 0. By some algebra, one can show that

f N − f ⋆ − L
µq

�

2− 2µq

L

�N �
f 0 − f ⋆

�

+
N
∑

j=0

�

2N− j
�

1− µq

L

�N−1�

×

 

f ⋆ − f j −

®

g j , y0 − x0 + 1
L

j−1
∑

l=0

g l

¸

− 1
2L



g j




2
+ L

4











y0 − x0 + 1
L

j−1
∑

l=0

g l + 1
L g j











2!

+

N−1
∑

i=1

N
∑

j=i

�

2N− j
�µq

L

� �

1− µq

L

�N−i−1�
�

f ⋆ − f j −

®

g j , y i − x0 + 1
L

j−1
∑

l=0

g l

¸

−

1
2L



g j




2
+ L

4











y i − x0 + 1
L

j−1
∑

l=0

g l + 1
L g j











2
�

+
N−1
∑

j=1

�

2N− j
�

1− µq

L

�N− j−1�

×

 

f j − f ⋆ − µq

2











y j − x0 + 1
L

j−1
∑

l=0

g l











2!

+
�

2N
�

1− µq

L

�N−1
+ L
µq

�

2− 2µq

L

�N�

×

�

f 0 − f ⋆ − µq

2



y0 − x0




2�

= −

 

L
4 (1−

µq

L )
N−1











y0 − x0 + 1
L

N
∑

l=0

g l











2!

−

N−1
∑

i=1

 

µq

4

�

1− µq

L

�N−i−1











y i − x0 + 1
L

N
∑

l=0

g l











2!

≤ 0.

By using the above inequality, we get

f N − f ⋆ ≤ L
µq

�

2− 2µq
L

�N �
f 0 − f ⋆

�

,

for any feasible point of (5.24), and the proof is complete.

By doing some calculus, one can verify the following inequality

2L2 − 2
�

µq −
L
2

�2

2L2 +
�

µq −
L
2

�2 ≥
�

2− 2µq
L

�

, µq ∈
� L

2 , L
�

.

Hence, Theorem 5.13 provides a tighter bound than (5.22).

Definition 5.14. [HSS20, Definition 1] Let γ ∈ (0,1] and µs ≥ 0. A function f is
called (γ,µs)-quasar-convex on X ⊆ Rn with respect to x⋆ ∈ argminx∈Rn f (x) if

f (x) + 1
γ〈∇ f (x), x⋆ − x〉+ µs

2 ∥x
⋆ − x∥2 ≤ f ⋆, ∀x ∈ X . (5.26)

The class of quasar-convex functions is large. For instance, non-negative ho-
mogeneous functions are (1,0)-quasar-convex on Rn. (Recall that a function
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f : Rn → R is called homogeneous of degree k if f (αx) = αk f (x) for all x ∈
Rn,α ∈ R. ) Indeed, if f is non-negative homogeneous of degree k ≥ 1, by the
Euler identity, we have

f (x) + 〈∇ f (x), x⋆ − x〉= (1− k) f (x)≤ 0, ∀x ∈ Rn,

where x⋆ = 0. In what follows, we list some convergence results concerning
quasar-convex functions for Algorithm 5.1.

Theorem 5.15. [BM20, Remark 4.3] Let f be L-smooth and let f be (γ,µs)-quasar-
convex on X = {x : f (x)≤ f (x0)}. If t1 =

1
L and if x1 is from Algorithm 5.1, then

f (x1)− f ⋆ ≤
�

1− γ
2µs
L

�

�

f (x0)− f ⋆
�

. (5.27)

In the following theorem, we state the relationship between quasar-convexity
and other concepts. Before we get to the theorem, we recall star convexity. A set
X is called star convex at x⋆ if

λx + (1−λ)x⋆ ∈ X , ∀x ∈ X ,∀λ ∈ [0, 1].

Theorem 5.16. Let x⋆ be the unique solution of problem (5.1) and let X = {x :
f (x)≤ f (x0)}. If X is star convex at x⋆, then we have the following implications:

i) (5.26)⇒ (5.16) with µg =
µsγ
2 +

µsγ
2

4 .

ii) (5.16)⇒ (5.26) with µs = ℓ−
L
2 and γ=

µg

ℓ for each ℓ ∈ (max( L
2 ,µg),∞).

iii) (5.26)⇒ (5.4) with µp = µsγ
2.

Proof. The proof of i) is similar in spirit to the proof of Theorem 1 in [NNG19].
Let x ∈ X . By the fundamental theorem of calculus and (5.26),we have

f (x)− f (x⋆) =

∫ 1

0

1
λ〈∇ f (λx + (1−λ)x⋆),λx + (1−λ)x⋆ − x⋆〉dλ

≥
∫ 1

0

γ
λ

�

f (λx + (1−λ)x⋆)− f (x⋆) + µsλ
2

2 ∥x − x⋆∥2
�

dλ

≥ γµs
4 ∥x − x⋆∥2,
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where the last inequality follows from the global optimality of x⋆. By summing
f (x)− f (x⋆) ≥ γµs

4 ∥x − x⋆∥2 and (5.26), we get the desired inequality. Now, we
prove part ii). Let x ∈ Rn and ℓ ∈ (max( L

2 ,µg),∞). By (5.2), we have

f (x)≤ f (x⋆) + L
2∥x − x⋆∥2. (5.28)

By using (5.28) and (5.16), we get

f (x) + ( ℓµg
)〈∇ f (x), x⋆ − x〉+ (ℓ− L

2 )∥x − x⋆∥2 ≤ f (x⋆).

For the proof of iii), we refer the reader to [BM20, Lemma 3.2].

By combining Theorem 5.4 and Theorem 5.16, under the assumptions of The-
orem 5.15, one can get the following convergence rate for Algorithm 5.1 with
t1 =

1
L ,

f (x1)− f ⋆ ≤
�

2L − 2µsγ
2

2L +µsγ2

�

�

f (x0)− f ⋆
�

,

which is tighter than the bound given in Theorem 5.15.

5.4 Concluding remarks

In this chapter we studied the convergence rate of the gradient method with fixed
step lengths for smooth functions satisfying the PŁ inequality. We gave a new
linear convergence rate, which is sharper than known bounds in the literature.
One important question which remains to be addressed is the computation of the
tightest convergence rate bound for Algorithm 5.1. Moreover, the performance
analysis of fast gradient methods, like Algorithm 5.2, for these classes of functions
that are discussed in this chapter may also be of interest.

We only studied the linear convergence in terms of the convergence of ob-
jective values. However, one can also infer the linear convergence in terms of
distance to the solution set or the norm of the gradient by using our results. For
instance, under the assumption of Theorem 5.4, we have

µp
2 d2

X ⋆(x
k)≤ f (xk)− f ⋆ ≤ γk

�

f (x0)− f ⋆
�

≤ Lγk

2 d2
X ⋆(x

0),

where the first inequality follows from Theorem 5.12, γ is the linear convergence
rate given in Theorem 5.4, and the last inequality resulted from (5.2). Hence,

d2
X ⋆(x

k)≤ Lγk

µp
d2

X ⋆(x
0).
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Moreover, the quadratic gradient growth is a necessary and sufficient conditions
for the linear convergence in terms of distance to the solution set; see [ZAdK24,
Theorem 3.4] and Theorem 7.10.
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The object of mathematics is the honor of the human spirit.

Carl Gustav Jacob Jacobi

6
Convergence rate analysis of the

randomized and cyclic coordinate descent
methods for convex optimization through

semidefinite programming

Preamble

In line with the previous two chapters, in this chapter we study a derivative of
the gradient descent method, known as the coordinate descent method. We study
randomized and cyclic coordinate descent for convex unconstrained optimization
problems. We improve the known convergence rates in some cases by using the
numerical semidefinite programming performance estimation method. As a spin-
off we provide a method to analyse the worst-case performance of the Gauss–
Seidel iterative method for linear systems where the coefficient matrix is posi-
tive semidefinite with a positive diagonal. Moreover, we study weighted Jacobi
method for solving quadratic programming problems and revisit some well-known
results in the literature. This chapter is based on the paper [AdKZ23b], except for
Section 6.3.2 which deals with the Jacobi method for solving linear system of

83
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equations.

6.1 Introduction

We consider the unconstrained optimization problem

f ⋆ = inf
x∈Rn

f (x), (6.1)

where f : Rn→ R is convex. We assume that f attains its infimum and f ⋆ denotes
the optimal value. In addition, we assume that f is an L-smooth function, that is,

∥∇ f (y)−∇ f (x)∥ ≤ L∥y − x∥, ∀y, x ∈ Rn.

Moreover, we denote the component Lipschitz constants by ℓi (i ∈ {1, . . . , n}), i.e.,

|[∇ f (x + tei)]i − [∇ f (x)]i| ≤ ℓi|t|, ∀x ∈ Rn, t ∈ R, (6.2)

where ei is the ith standard unit vector. Let ℓmax := max1≤i≤n ℓi , and note that
ℓmax ≤ L ≤ nℓmax [Wri15].

Due to the simplicity and small per-iteration cost, coordinate descent methods
have been employed extensively for large-scale optimization problems [Nes12,
Wri15].

The generic coordinate descent method is shown in Algorithm 6.1.

Algorithm 6.1 Generic coordinate descent

Set N and {tk}N−1
k=0 (step lengths) and pick x0 ∈ Rn.

For k = 0, 1, . . . , N − 1 perform the following step:
1. Choose an index ik from {1, 2, ..., n}.

2. xk+1 = xk − tk[∇ f (xk)]ik eik .

In this chapter, we revisit the worst-case convergence rate analysis for Algo-
rithm 6.1 for two of the best known variants, namely randomized coordinate de-
scent, and cyclic coordinate descent. In the former, the index ik is chosen uniformly
at random from {1, 2, ..., n}, and in the latter, the cyclic ordering,
(1, 2, . . . , n, 1, 2, . . . , n, . . . ), is used.

We will improve the best-known convergence rates from the literature for
some specific values of the parameters n, L, N , tk for k ∈ {0,1, . . . , N − 1} and ℓi

for i ∈ {1, . . . , n}. Finally, the Gauss–Seidel iterative method for positive semidefi-
nite linear systems is a special case cyclic coordinate descent for convex quadratic
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functions, and we will investigate the implications of our analysis for this classical
method as well.

Recently, Taylor and Bach [TB19, Appendix I] and Kamri et al. [KHG23] stud-
ied the convergence of the coordinate descent algorithm using the semidefinite
programming (SDP) performance estimation method. We will also use SDP per-
formance estimation in our analysis, but in a different way than Taylor and Bach
[TB19, Appendix I], and our main contribution may be seen as the extension and
refinement of the approach by Kamri et al. [KHG23]. For general background
information on SDP, see e.g. [WSV12].

6.2 Convergence rate of randomized coordinate descent

The randomized coordinate descent method is shown in Algorithm 6.2 for easy ref-
erence.

Algorithm 6.2 Randomized coordinate descent

Set N and {tk}N−1
k=0 (step lengths) and pick x0 ∈ Rn.

For k = 0,1, . . . , N − 1 perform the following step:
1. Choose index ik with uniform probability from {1, 2, ..., n}.

2. xk+1 = xk − tk[∇ f (xk)]ik eik .

We proceed to revisit its worst-case convergence rate for three classes for func-
tion, namely convex L-smooth functions, convex quadratic functions, and strongly
convex, L-smooth functions.

6.2.1 The case of L-smooth functions

Regarding the convergence of Algorithm 6.2 for L-smooth convex functions, the
following is known. (We state the result as in the survey [Wri15, Theorem 1], but
it is originally due to Nesterov [Nes12]).

Theorem 6.1. [Wri15, Theorem 1] Let f : Rn→ R is an L-smooth convex function
for some L > 0. If tk =

1
ℓmax

for all k, then, for each k > 0,

E
�

f (xk)
�

− f ⋆ ≤
�

2nℓmax
k

�

R2
0, (6.3)

where R0 satisfies maxx⋆∈Smaxx{∥x − x⋆∥ : f (x)≤ f (x0)} ≤ R0 and S denotes the
optimal solution set.
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In this section, we study the behaviour of the randomized coordinate descent
method for L-smooth convex functions. The worst-case convergence rate of the
Algorithm 6.2 can be formulated as follows.

max E[ f (xN )]− f (x⋆)

s. t. f ∈ F0,L(Rn)

f satisfies (6.2) for every x ∈ Rn for some ℓi , i ∈ {1, . . . , n} (6.4)

∥x0 − x⋆∥2 ≤∆

xk, k ∈ {1,2, ..., N}, are generated by Algorithm 6.2 with respect to x0

and step length tk

x0 ∈ Rn, ∇ f (x⋆) = 0,

where f , xk, x⋆ are decision variables and t, L, n and ℓi , i ∈ {1, . . . , n}, are the
given parameters. Problem (6.4) in general is intractable. Moreover, note that
xk depends on the index ik which is chosen uniformly at random from the set
{1, . . . , n} therefore (6.4) is a stochastic programming problem. To deal with this
we introduce a random variable dk which depends on the index ik and is defined
by dk := [∇ f (xk)]ik eik . Note that dk has the following properties:

E
�

∥dk∥2
�

= 1
n E

�

∥∇ f (xk)∥2
�

E
�


dk,∇ f (xk)
��

= 1
n E

�

∥∇ f (xk)∥2
�

(6.5)

E
�


dk, xk
��

= 1
n E

�


∇ f (xk), xk
��

,

where the expectation again refers to the joint distribution of all the random vari-
ables dk for k ∈ {0,1, . . . , N} and xk,∇ f (xk), f (xk) for k ∈ {0,1, . . . , N}. By
Taylor’s theorem and (6.2), we have

f (xk+1)≤ f (xk) +



∇ f (xk), xk+1 − xk
�

+ ℓmax
2 ∥x

k+1 − xk∥2 (6.6)

f (xk)≤ f (xk+1) +



∇ f (xk+1), xk − xk+1
�

+ ℓmax
2 ∥x

k − xk+1∥2,

where ℓmax =maxi∈{1,...,n} ℓi as before. Therefore, the relaxation of problem (6.4)
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is given by

max E[ f (xN )]− f (x⋆)

s. t. {(xk;∇ f (xk); f (xk))} satisfy (2.4) for k ∈ {0, 1, · · · , N ,⋆} w.r.t. µ= 0, L

{(xk;∇ f (xk); f (xk))} satisfy (6.6) for k ∈ {0, 1, · · · , N} w.r.t. ℓmax

{xk;∇ f (xk); dk} satisfies (6.5) (k ∈ {0, · · · , N}) (6.7)

∥x0 − x⋆∥2 ≤∆

xk+1 = xk − tkdk

x0 ∈ Rn, ∇ f (x⋆) = 0,

where f (xk), xk, x⋆,∇ f (xk) and dk are decision variables. Note that because the
problem (6.1) is invariant under translation, without loss of generality we may
assume that x⋆ is the zero vector. Since xk+1 = xk− tkdk is a recursive relation, xk

can be written as linear combination of x0 and d is. In this way, all the unknowns
appear as entries in the following matrix:

G =E
�

Gram
�

x0,∇ f (x0), · · · ,∇ f (x0), d0, · · · , dN
��

=

























E[∥x0∥2] E[〈x0,∇ f (x0)〉] · · · E[〈x0, dN 〉]
E[〈∇ f (x0), x0〉] E[∥∇ f (x0)∥2] · · · E[〈∇ f (x0), dN 〉]

...
...

. . .
...

E[〈∇ f (xN ), x0〉] E[〈∇ f (xN ),∇ f (x0)〉] · · · E[〈∇ f (xN ), dN 〉]
E[〈d0, x0〉] E[〈d0,∇ f (x0)〉] · · · E[〈d0, dN 〉]

...
...

. . .
...

E[〈dN , x0〉] E[〈dN ,∇ f (x0)〉] · · · E[∥dN∥2]

























.

Note that G is the expectation of a random Gram matrix. Since every realization of
this random matrix is positive semidefinite, and the expectation preserves positive
semidefiniteness, it follows that G is positive semidefinite as well. Therefore,
problem (6.7) can be written as an SDP problem, where the variables are G and
E[ f (x i)].

In what follows we compare the convergence rate derived by solving the prob-
lem (6.7) and the bound by Wright (6.3) for some specific values of the param-
eters n, L, N , tk for k ∈ {0, 1, · · · , N} and ℓi for i ∈ {1, · · · , n}. All the figures in
this chapter were obtained by solving the SDP problems with the solver Mosek
[ApS19], using the Yalmip [Löf04] Matlab interface.
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Bound (6.3) (n= 2)
Bound (6.3) (n= 4)

PEP bound (6.7) (n= 2)
PEP bound (6.7) (n= 4)

Figure 6.1: Convergence rate for Algorithm 6.2 computed by performance esti-
mation problem (6.7) (dashed lines) and the bound given by (6.3) (thick lines)
for L = 2, lmax = 1, t = 1,∆= 1 and different n

5 10 15 20 25 30
0

2

4

Number of iterations (N)

E
[f
(x

N
)]
−

f(
x⋆
)

Bound (6.3) (n= 2)
Bound (6.3) (n= 4)

PEP bound (6.7) (n= 2)
PEP bound (6.7) (n= 4)

Figure 6.2: Convergence rate for Algorithm 6.2 computed by performance esti-
mation problem (6.7) (dashed lines) and the bound given by (6.3) (thick lines)
for L = 4, lmax = 2, t = 0.5,∆= 1 and different n

Note that the convergence rate provided by solving performance estimation is
strictly better than the bound given by Wright. In other words, the bound (6.3)
is not tight for the values of the parameters that we considered. Moreover, the
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bound given by performance estimation can also be calculated for different step
lengths than the fixed step lengths 1/ℓmax in the bound (6.3).

6.2.2 The case of convex quadratic functions

In this section we study the convergence rate of the randomized coordinate de-
scent method in case that the objective function is a quadratic function of the form

min
x∈Rn

f (x) := 1
2 x⊤Ax − b⊤x , (6.8)

where A is a symmetric positive semidefinite matrix. To study this case we need
to add an additional constraint to restrict our model to quadratic functions. The
following necessary condition for f to be a quadratic function can be verified
easily, and has been used in SDP performance analysis by Drori et al [DS20]

1
2〈∇ f (x)−∇ f (y), x − y〉= f (x)− f (y)− 〈∇ f (y), x − y〉.

Since this constraint holds for every point in the domain we just consider the
relaxed constraint that only holds for the point generated by the method in addi-
tion to the initial point and the optimal point. In this case we add the following
constraint to the problem (6.7):

1
2 〈∇ f (x i)−∇ f (x j), x i − x j〉= f (x i)− f (x j)− 〈∇ f (x j), x i − x j〉 ∀i, j ∈ {0, . . . , N ,∗}.

(6.9)

In what follows we compare the convergence rate of the randomized coordi-
nate descent method for the general problem (6.7) to the convergence rate for
quadratic problems.
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Figure 6.3: Convergence rate for Algorithm 6.2 computed by performance esti-
mation problem for quadratic functions (red line) and the bound given by (6.7)
(blue line) for n= 10, L = 2, lmax = 1, t = 1,∆= 1.
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Figure 6.4: Convergence rate for Algorithm 6.2 computed by performance esti-
mation problem for quadratic functions (red line) and the bound given by (6.7)
(blue line) for n= 2, L = 2, lmax = 1, t = 1,∆= 1.

Note that the convergence rate for the quadratic problem is sightly better than
that of the general case.
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6.2.3 The case of µ-strongly convex L-smooth functions

In this section, we study the convergence rate of the µ-strongly convex L-smooth
functions. If µ > 0 the optimal value of problem (6.7) for one iteration of Algo-
rithm 6.2, i.e. N = 1, appears to be the same as the following bound (6.10) given
by Wright [Wri15].

Theorem 6.2. [Wri15, Theorem 1] Let f ∈ Fµ,L(Rn). If tk =
1
ℓmax

for each k, and
µ > 0, then, for all N > 0,

E
�

f (xN )
�

− f ⋆ ≤
�

1− µ
nℓmax

�N �
f (x0)− f ⋆

�

. (6.10)

The fact that the two bounds seem to coincide does not suggest that (6.10) is
tight, since the SDP bound (6.7) is a relaxation, and not exact.

6.3 Cyclic coordinate descent

Cyclic coordinate descent is one of the most important coordinate descent al-
gorithms due to its simplicity. The convergence rate of cyclic coordinate descent
method for the class of L-smooth convex functions is studied by Kamri et al us-
ing the performance estimation method [KHG23]. This method is described in
Algorithm 6.3.

Algorithm 6.3 Cyclic coordinate descent

Set number of cycles K , {tk}N−1
k=0 (step lengths), pick x0 ∈ Rn and set N = nK .

For k = 0,1, 2, . . . , N − 1 perform the following step:
1. Set i = k (mod n) + 1

2. xk+1 = xk − tk[∇ f (xk)]iei .

In each iteration the method updates the current point over one of the coor-
dinates in cyclic order.

The following result is known about the rate of convergence. We present it as
in [Wri15], but it is originally due to Beck and Tetruashvili [BT13].

Theorem 6.3. [Wri15, Theorem 3] Let f : Rn→ R be an L-smooth convex function
for some L > 0. If tk =

1
ℓmax

for all k, then, for N = n, 2n, 3n, . . .,

f (xN )− f ⋆ ≤
�

4nR2
0ℓmax(1+ nL2/ℓ2max)

N + 8

�

, (6.11)
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where R0 satisfies maxx⋆∈Smaxx{∥x − x⋆∥ : f (x)≤ f (x0)} ≤ R0 and S denotes the
optimal solution set. If f is also strongly convex with parameter µ > 0, then one
has, for k = n, 2n, 3n, . . .,

f (xk)− f ⋆ ≤
�

1−
µ

2ℓmax(1+ nL2/ℓ2max)

�k/n
�

f (x0)− f ⋆
�

.

For easy reference, we recall the interpolation conditions from Theorem 2.8
in the case that µ= 0: The set {x i ,∇ f (x i), f (x i)} for i ∈ {0, 1, · · · , N ,⋆} is F0,L−
interpolable if and only if

f (x i)≥ f (x j) + 〈∇ f (x j), x i − x j〉+ 1
2L



∇ f (x i)−∇ f (x j)




2
, ∀i, j ∈ {0, 1, · · · , N ,⋆}.

(6.12)

Using these conditions, we may formulate the worst-case convergence rate as
performance estimation problem:

max f (xN )− f (x⋆)

s. t. {(x i;∇ f (x i); f (x i))} satisfy (6.12) for i ∈ {0, 1, · · · , N ,⋆} w.r.t. L

∥x0 − x⋆∥2 ≤∆ (6.13)

xk (k ∈ {1, 2, · · · , N}) are generated using Algorithm 6.3

x0 ∈ Rn, ∇ f (x⋆) = 0.

Problem (6.13) can be formulated as a semidefinite programming problem, and
this is precisely what was done by Kamri et al. [KHG23].

Since the univariate function t 7→ f (xk + tei) is convex and ℓi-smooth, it
follows from (6.12) that, for every two consecutive points xk and xk+1 generated
by Algorithm 6.3, the following inequalities hold if i = k (mod n) + 1:

f (xk)≥ f (xk+1) +∇ f (xk+1)i(x
k
i − xk+1

i ) + 1
2ℓi
(∇ f (xk)i −∇ f (xk+1)i)

2 (6.14)

f (xk+1)≥ f (xk) +∇ f (xk)i(x
k+1
i − xk

i ) +
1

2ℓi
(∇ f (xk+1)i −∇ f (xk)i)

2.

By adding the above inequalities to (6.13) one can get a better upper bound for
the worst-case convergence rate, i.e.

max f (xN )− f (x⋆)

s. t. {(x i;∇ f (x i); f (x i))} satisfy (6.12) for i ∈ {1, · · · , N ,⋆} w.r.t. L

{(x i;∇ f (x i); f (x i))} satisfy (6.14) for i ∈ {1, · · · , N ,⋆} w.r.t. {ℓ1, · · · ,ℓn}

∥x0 − x⋆∥2 ≤∆ (6.15)

xk (k ∈ {1, · · · , N}) are generated using Algorithm 6.3

x0 ∈ Rn, ∇ f (x⋆) = 0.
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In order to obtain an SDP relaxation to (6.15), we proceed in the same way as
Kamri et al. [KHG23]. We view (6.15) as a quadratically constrained quadratic
program (QCQP) in variables corresponding to the unknowns

xk
i ,
∂ f (xk)
∂ x i

, f (xk) k ∈ {0,1, 2, · · · , N}, i ∈ {1, . . . , n},

Next we use the following relations to eliminate variables:

xk+1
i − xk

i =

¨

−tk
∂ f (xk

i )
∂ x i

if i = k (mod n) + 1

0 else

which hold for all k ∈ {0,1, 2, · · · , N − 1}, and i ∈ {1, . . . , n}. Subsequently we
form the standard Shor SDP relaxation (see e.g. [WKK20]) of the resulting QCQP.
Note that this is different to the approach we followed for randomized coordinate
descent. In particular, the size of the SDP relaxation now depends on n, which
was not the case before. This also limits the parameter values for which we may
solve the SDP relaxations.

In Figure 6.5 we compare the SDP upper bounds from (6.13) and (6.15) for
various parameter values.

The figure shows that the bound can be improved slightly by adding the set
of constraints (6.14) to the model provided by Kamri et al. [KHG23]. Moreover,
we add the constraint which correspond to the quadratic functions (6.9) to the
model (6.15) which provides us with a better bound for quadratic functions. The
computed values are much better that the theoretical bound (6.11), to the extent
that we do not include this bound in the plot. Indeed, Kamri et al. [KHG23]
already mentioned in their paper that the computed values for their model are
much better than the theoretical bound (6.11).
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Figure 6.5: Convergence rate Algorithm 6.3 computed by performance estima-
tion problem (6.15) (blue), the bound given by (6.13) (red) and the bound for
quadratic functions (green) for n= 2, L = 2,ℓ1 = 1,ℓ2 = 1, t = 0.5,∆= 1.
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Figure 6.6: Convergence rate for Algorithm 6.3 computed by performance esti-
mation problem of quadratic functions for ℓi = 1 i ∈ {1, · · · , n}, L =

∑n
i=1 ℓi , t =

1,∆= 1 and different n.

Note that our discussion for coordinate-wise cyclic coordinate descent in this
section could be extended to block-wise cyclic coordinate descent in a similar way
as was done by Kamri et al. [KHG23].
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6.3.1 Relation to the Gauss–Seidel method

The minimization of the convex quadratic function in (6.8) is equivalent to the
solution of the linear system Ax = b. Here, we may assume w.l.o.g. that A has
a positive diagonal. Cyclic coordinate decent for problem (6.8) is closely related
to the iterative Gauss–Seidel method for solving this linear system. For this rea-
son, cyclic coordinate descent is sometimes also referred to as nonlinear Gauss–
Seidel. It is therefore an interesting question whether the SDP performance esti-
mation framework yields any new insights on the performance of the Gauss–Seidel
method.

Denoting A = (ai j), the iterative Gauss–Seidel method may be described as
follows.

Algorithm 6.4 Gauss–Seidel method

Set N and pick x0 ∈ Rn.
For k = 0,1, . . . , N − 1 perform the following:

xk+1
i = 1

aii

�

bi −
∑i−1

j=1 ai j x
k+1
j −

∑n
j=i+1 ai j x

k
j

�

(i = 1, . . . , n).

This is exactly cyclic coordinate descent with unit step lengths if the gradient
at a point x is replaced by D−1∇ f (x), where f (x) = 1

2 x⊤Ax − b⊤x as before,
and D is the diagonal matrix with the same diagonal entries as A. To see this,
recall that the Fréchet derivative of a differentiable function f : Rn→ R at a point
x ∈ Rn is the unique linear operator, say Df (x) : Rn→ R, such that

lim
∥h∥→0

f (x + h)− f (x)− Df (x)h

∥h∥
= 0.

Once an inner product on Rn is fixed, say 〈·, ·〉, one may, by the Riesz representa-
tion theorem, express Df (x)h= 〈g(x), h〉, where g(x) is called the gradient vector
of f at x with respect to 〈·, ·〉. In particular, if 〈·, ·〉 is the Euclidean dot product,
then g(x) =∇ f (x). If one changes to the inner product 〈·, ·〉D defined by

〈u, v〉D =
n
∑

i=1

aiiui vi (u, v ∈ Rn), (6.16)

then the gradient vector at x becomes D−1∇ f (x), by the uniqueness of the Fréchet
derivative.

It was shown in [DKGT20] that the interpolation condition in Theorem 2.37
holds for any reference inner product 〈·, ·〉, provided that the gradient vector is
interpreted accordingly.
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In other words, the following SDP performance estimation problem gives a
bound on the worst-case performance of the Gauss–Sidel method after N itera-
tions, when A is a symmetric positive semidefinite matrix with a positive diagonal.

max f (xN )− f (x⋆)

s. t. {(x i;∇ f (x i); f (x i))} satisfy (6.12) and (6.9) for i ∈ {0,1, · · · , N ,⋆}

w.r.t. L = λmax(D
−1A)

{(x i;∇ f (x i); f (x i))} satisfy (6.14) for i ∈ {0, 1, · · · , N ,⋆}

w.r.t. ℓ1 = . . .= ℓn = 1

∥x0 − x⋆∥2 ≤∆ (6.17)

xk (k ∈ {1, 2, · · · , N}) is generated using Algorithm 6.3

x0 ∈ Rn, ∇ f (x⋆) = 0,

where the inner product is now understood to be the one in (6.16), and the norm
the induced norm for this inner product, and λmax(D−1A) denotes the largest
eigenvalue of D−1A. (Note that the eigenvalues of D−1A are real.) Importantly, the
reference inner product is not visible in the SDP performance estimation problem
reformulation of (6.17), since only a Gram matrix for this inner product appears.
It is therefore equally valid, for any inner product, provided that the inner prod-
uct and norm are interpreted accordingly. Of course, the Lipschitz constants like
(6.2) depend on the norm as well. It is easy to verify that, for the inner product
(6.16), and f (x) = 1

2 x⊤Ax − b⊤x , one has ℓ1 = . . .= ℓn = 1 and L = λmax(D−1A)
as is used in (6.17).

In summary, we have shown the following.

Theorem 6.4. Consider a solvable system of linear equations Ax = b where A is
a symmetric positive semidefinite matrix with positive diagonal, and let x⋆ denote
a solution. Letting f (x) = 1

2 x⊤Ax − b⊤x, after N iterations of the Gauss–Seidel
method, an upper bound on f (xN )− f (x⋆) is given by the optimal value of the SDP
problem (6.17), provided that the starting point x0 satisfies ∥x0 − x⋆∥ ≤ ∆ for a
given ∆, where the norm is the induced norm of the inner product (6.16).

The Gauss–Seidel method is known to be convergent when A is symmetric
positive-definite, e.g. [GVL13, Theorem 10.1.2], or strictly or irreducibly diago-
nally dominant, e.g. [Bag95]. The case when A is only positive semidefinite (with
positive diagonal) seems to be less well-understood, and our approach sheds more
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light on this case. In particular, numerical results of the type shown in Figure 6.6
apply here.

6.3.2 Weighted-Jacobi method

This section is dedicated to the studying of the quadratic optimization problem
presented in (6.8), where the matrix A is both symmetric and positive definite. The
challenge of solving (6.8) is inherently similar to the task of solving the subsequent
linear equation system Ax = b. As a natural progression from our previous section
where we delved into the Gauss–Seidel method, we now turn our attention to the
analysis of an algorithm commonly employed for the general solution of linear
equation systems.

The matrix A = [ai j] can be expressed as the sum of its components, A =
D + L + LT , with D representing the diagonal, and L denoting the lower trian-
gular part of the matrix A. The Jacobi method is a well-known and widely-used
approach for solving linear equation systems [Jac46]. In this section, we delve
into a comprehensive examination of the Jacobi method and conduct a thorough
review of its convergence analysis. The Jacobi method solves the following system
in each iteration,

xk =
�

I − D−1A
�

xk−1 + D−1 b. (6.18)

It is worth noting that there are certain similarities between the Gauss–Seidel
and Jacobi methods. However, the key distinction between them lies in their
updates of values from previous generated points. In the Jacobi method (6.18),
values from the previous step are used, whereas the Gauss–Seidel method, as
demonstrated in Algorithm 6.4, always utilizes the most recent updated values
in every iteration, i.e. the Gauss–Seidel method runs the following updates at
iteration k+ 1,

xk+1
i =

1
aii

 

bi −
i−1
∑

j=1

ai j x
k+1
j −

n
∑

j=i+1

ai j x
k
j

!

∀i,

whereas the Jacobi method performs the following updates at iteration k+ 1,

xk+1
i =

1
aii

 

bi −
n
∑

j ̸=i

ai j x
k
j

!

∀i.

It is a well-known that the iteration xk = Rxk−1+c converges if and only if the
spectral radius ρ(R) < 1 [Dem97, Chapter 6.5]. In our specific case, where we



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

98

consider matrix A as symmetric and positive semidefinite, it is sufficient to ensure
that λmax(R) < 1 since the spectral radius ρ(R) is equivalent to λmax(R). For the
Jacobi method, this condition translates to 0 < ρ(D−1A) < 2, which is a some-
what limiting requirement. To address this issue, the weighted-Jacobi method is
introduced, which is detailed in Algorithm 6.5, with the specific choice of qk = 0
for 0≤ k ≤ N [Ric11].

In cases that each step of the weighted-Jacobi method is performed inexactly,
an adaptation known as the inexact weighted-Jacobi method has been introduced;
see [GO88, GO82] for more discussion. To be more specific, for a given parameter
δ, the value of qk is determined in each iteration as follows

∥qk∥ ≤ δ∥b− Axk∥. (6.19)

Algorithm 6.5 Inexact Weighted-Jacobi method

Set N and α (weight) and pick x0 ∈ Rn.
For k = 1, 2, . . . , N perform the following step:

1. select qk that satisfies (6.19)

2. xk =
�

I −αD−1A
�

xk−1 +αD−1qk−1 +αD−1 b

The convergence of the weighted-Jacobi method and its various adaptations
has been extensively explored in the literature. You can find a concise overview in
[Saa03, Chapter 4]. The following theorems represent well-established conver-
gence results for the Jacobi method.

Theorem 6.5. If A is strictly diagonally dominant (aii >
∑n

j=1 |ai j| for all i), the
Jacobi method converges.

Theorem 6.6. [E.g. Che] The weighted-Jacobi method converges if and only if 0 <
α < 2

λmax(D−1A) . Moreover, by considering α⋆ = 2
λmin(D−1A)+λmax(D−1A) one get the opti-

mal convergence rate

ρ⋆ =
1−κD−1A

1+κD−1A
,

where κD−1A =
λmin(D−1A)
λmax(D−1A)

Now, let’s delve into an examination of the convergence rate for the inexact
weighted-Jacobi method.
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Theorem 6.7. The inexact weighted-Jacobi method with δ ≥ 0 has the following
convergent rate for a suitable choice of α

∥ek+1∥ ≤ (∥I −αD−1A∥+αδ∥D−1∥∥A∥)∥ek∥.

where ek = x⋆ − xk.

Proof. We define rk = b− Axk. By some calculation one can show that rk = Aek.
By this definition we have

ek+1 = Gek + pk,

where pk = −αD−1qk, and G = I −αD−1A. It can be easily seen that

∥pk∥= ∥αD−1qk∥ ≤ αδ∥D−1∥∥b− Axk∥= αδ∥D−1∥∥Aek∥.

Therefore,
∥ek+1∥= ∥Gek + pk∥ ≤ (∥G∥+αδ∥D−1∥∥A∥)∥ek∥,

which completes the proof.

It is evident that when δ = 0, Theorem 6.7 simplifies to the weighted-Jacobi
method, and the convergence rate mirrors that of Theorem 6.6. In other words,
by maintaining the induced norm as two, you can establish ∥I − αD−1A∥ = 1 −
αλmin(D−1A). Setting α as defined in Theorem 6.6 yields an equivalent conver-
gence rate, while the performance estimation method offers the following conver-
gence rate.

Theorem 6.8 (Based on Theorem 5.3. [DKGT20]). Consider the inexact Jacobi
method with fixed step size α where µ = λmin(D−1A) and L = λmax(D−1A). If
δ ∈ [0, 2µ

L+µ], and α ∈ [0, 2µ−δ(L+µ)
(1−δ)µ(L+µ)], one has

∥x1 − x⋆∥D ≤ (1− (1−δ)µα)∥x0 − x⋆∥D. (6.20)

Golub and Overton in [GO82] investigate the convergence of the inexact second-
order Richardson method. Notably, in their analysis by setting ω = 1 and M = D,
one can derive the inexact Jacobi method. In what follows, we aim to derive the
convergence rate of the inexact Jacobi method based on their analysis. Note that
here, ∥ · ∥ represents the Euclidean norm for vectors and the spectral norm for
matrices.

∥x∥= 〈x , x〉
1
2 , ∥A∥= max

∥x∥=1
∥Ax∥.
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Let us introduce the following definitions ek = x⋆ − xk and rk = b− Axk. Just as
in the previous case, we have rk = Aek and ek+1 = Gek+pk, where pk = −αD−1qk

and G = I −αD−1A. The eigenvector decomposition (SVD-decomposition) of the
matrix G is as follows

G = D−1/2(I −αD−1/2AD−1/2)D1/2 = D−1/2VΛV T D1/2,

where Λ is a diagonal matrix with elements representing the eigenvalues λi of the
matrix I −αD−1/2AD−1/2, and V is an orthogonal matrix. Now we introduce

êk = V T D1/2ek and p̂k = −αV T D−1/2qk.

These result in
êk+1 = Λêk + p̂k.

By the Lemma 1 in [GO82], one gets

êk = Sk ê1 +
k−1
∑

l=1

Sk−l p̂l ,

where Sk is diagonal matrix with diagonal elements

Sk
j j = λ

k−1
j .

Define ρ = λmax which is equal to 1−αλmin(D−1A) if α ∈ [0, 2
λmax(D−1A)+λmin(D−1A)].

It is easily seen that ∥Sk∥ ≤ ρk−1. Therefore,

∥êk∥ ≤ ρk−1∥ê1∥+
k−1
∑

l=1

ρk−l−1∥p̂l∥.

By the fact that ∥p̂k∥ ≤ ε∥êk∥ where ε = δα∥D−1/2∥∥AD−1/2∥ and δ is given by
(6.19), the above inequality yields to

∥êk∥ ≤ ρk−1∥ê1∥+ ε
k−1
∑

l=1

ρk−l−1∥êl∥.

Now, we introduce a new variable, τk = ρk−1∥ê1∥ + ε
∑k−1

l=1 ρ
k−l−1τl . Through

some algebraic manipulation, we find that τ1 = ∥ê1∥ by definition. Furthermore,
τk satisfies the following homogeneous equation

τk+1 = (ρ + ε)τk.

Therefore by Theorem 1 in [GO82] one may have the following convergence re-
sult.
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Theorem 6.9. [GO82] The error norm ∥êk∥ associated with the kth iterate of the
inexact Jacobi method is bounded by

∥êk∥ ≤ (ρ + ε)k∥ê0∥. (6.21)

Note that, based on norm properties, we have ∥êk∥= ∥xk− x⋆∥D. To compare
the result from the last theorem with Theorem 6.8, one can set k = 1 in the last
theorem, yielding

∥ê1∥ ≤
�

∥I −αD−1A∥+αδ∥D−1/2∥∥AD−1/2∥
�

∥ê0∥.

As per the assumptions of Theorem 6.8, if we set δ = 0, both bounds (6.20) and
(6.21) become equal. However, when δ ̸= 0, one can demonstrate that

αδµ≤ αδ∥AD−1∥ ≤ αδ∥D−
1
2 ∥∥AD−

1
2 ∥. (6.22)

This inequality shows that the bound provided by Theorem 6.8 is better when
compared to the bound given by Theorem 6.9. The example below illustrates
that the inequality 6.22 can be strict in some cases.

Example 6.10. Let us define A =

�

2 1
1 3

�

. It is easily seen that µ = 1.3820 and

∥D−
1
2 ∥∥AD−

1
2 ∥ = 1.5811 which shows that for any positive α and δ inequality

(6.22) is strict.

6.4 Conclusion

We have studied SDP performance estimation approaches to analyse randomized
and cyclic coordinate descent, thereby complementing recent results in [KHG23].
For randomized coordinate descent, we have given the first known SDP perfor-
mance estimation bound. For cyclic coordinate descent, we were able to improve
slightly on the numerical values given in [KHG23]. Of course, to obtain new rates
of convergence in general, it is necessary to solve the SDP performance estima-
tion problems analytically, as opposed to numerically, but we have been unable to
obtain analytic solutions for the SDP problems presented in this chapter. In this
chapter, we also discussed the link with the Gauss–Seidel method in the case of
convex quadratic functions. Moreover, we studied the weighted Jacobi method for
solving a linear system of equations which is closely related to the Gauss–Seidel
method.
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Obvious is the most dangerous word in mathematics.

E.T. Bell (1883–1960)

7
Convergence rate analysis of the gradient

descent-ascent method for
convex-concave saddle-point problems

Preamble

In this chapter, we study the gradient descent-ascent method for convex-concave
saddle-point problems. We derive a new non-asymptotic global convergence rate
in terms of distance to the solution set by using the semidefinite programming
performance estimation method. The given convergence rate incorporates most
parameters of the problem and it is exact for a large class of strongly convex-
strongly concave saddle-point problems for one iteration. We also investigate the
algorithm without strong convexity and we provide some necessary and sufficient
conditions under which the gradient descent-ascent method enjoys linear conver-
gence. This chapter is based on the paper [ZAdK24].

103
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7.1 Introduction

We consider the convex-concave saddle point problem

min
x∈Rn

max
y∈Rm

F(x , y), (7.1)

where F : Rn×Rm→ (−∞,∞), and F(·, y) and F(x , ·) are convex and concave,
respectively, for any fixed x ∈ Rn and y ∈ Rm. We assume that problem (7.1) has
some solution, that is, there exists a saddle point (x⋆, y⋆) ∈ Rn ×Rm with

F(x⋆, y)≤ F(x⋆, y⋆)≤ F(x , y⋆), ∀x ∈ Rn,∀y ∈ Rm.

We denote the solution set of problem (7.1) with S⋆. We call F smooth if for some
Lx , L y , Lx y , we have

i) ∥∇x F(x2, y)−∇x F(x1, y)∥ ≤ Lx∥x2 − x1∥ ∀x1, x2, y

ii) ∥∇y F(x , y2)−∇y F(x , y1)∥ ≤ L y∥y2 − y1∥ ∀x , y1, y2

iii) ∥∇x F(x , y2)−∇x F(x , y1)∥ ≤ Lx y∥y2 − y1∥ ∀x , y1, y2

iv) ∥∇y F(x2, y)−∇y F(x1, y)∥ ≤ Lx y∥x2 − x1∥ ∀x1, x2, y.

The function F is said to be strongly convex-strongly concave if

i) F(·, y)− µx
2 ∥ · ∥

2 is convex for any fixed y

ii) F(x , ·) + µy
2 ∥ · ∥

2 is concave for any fixed x ,

for some µx ,µy > 0. Note that strong convexitystrong concavity implies that
problem (7.1) has a unique solution (x⋆, y⋆). We denote the set of smooth strongly
convex-strongly concave functions by F(Lx , L y , Lx y ,µx ,µy).

Problem (7.1) has applications in game theory [BO98], robust optimization
[BTEGN09], adversarial training [GPAM+20], and reinforcement learning [YND+20],
to name but a few. In addition, various other algorithms have been developed for
solving saddle point problems; see e.g. [HA21, JM22, LJJ20, NYZ21, SPPMD19,
WL20, XZXL23].

One of the simplest approaches for handling problem (7.1) introduced in
[AAH+58, Chapter 6] is the gradient-descent-ascent method, which may be re-
garded as a generalization of the gradient method to saddle point problems. The
gradient descent-ascent method is described in Algorithm 7.1.

The local and global linear convergence of Algorithm 7.1 have been investi-
gated in the literature; see [FOP20, LS19, ZWLG22] and the references therein. As
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Chapter 7. Convergence rate of the gradient descent-ascent method 105

Algorithm 7.1 The gradient descent-ascent method

Set N and t > 0 (step length), pick x0 and y0.
For k = 1,2, . . . , N perform the following simultaneous steps:

1. xk = xk−1 − t∇x F(xk−1, yk−1).

2. yk = yk−1 + t∇y F(xk−1, yk−1).

we investigate the global linear convergence rate of Algorithm 7.1, we mention
one known global convergence result, which is derived by using variational in-
equality techniques. Suppose that z = (x , y). Let the function φ : Rn+m→ Rn+m

given by φ(z) =
�

∇x F(z) −∇y F(z)
�T

. It is shown that, see e.g. [MOP20b],

∥φ(z̄)−φ(ẑ)∥ ≤ 2L∥z̄ − ẑ∥,

〈φ(z̄)−φ(ẑ), z̄ − ẑ〉 ≥ µ∥z̄ − ẑ∥2,

where L = max{Lx , L y , Lx y} and µ = min{µx ,µy}. Indeed, φ is Lipschitz con-
tinuous and strongly monotone. By [FP03, Theorem 12.1.2], for t ∈ (0, µ2L2 ), we
have

∥x1 − x⋆∥2 + ∥y1 − y⋆∥2 ≤ (1+ 4L2 t2 − 2µt)
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

. (7.2)

In this study, we revisit Algorithm 7.1 and improve the convergence rate (7.2).
Indeed, we derive a new convergence rate involving most parameters of prob-
lem (7.1). It is worth noting that if one sets L = max{Lx , L y , Lx y} and µ =
min{µx ,µy}, the new bound dominates the convergence rate (7.2) for any step
length t ∈

�

0, µ2L2

�

. Furthermore, by setting t = µ
4L2 , one can infer that Algo-

rithm 7.1 has a complexity of O
�

L2

µ2 ln
�1
ε

�

�

to compute iterates (xk, yk) such that

∥xk− x⋆∥2+∥yk− y⋆∥2 ≤ ε
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

, which is the known itera-
tion complexity bound in the literature; see e.g. [BPG+23, ZBLG21]. In this study,
thanks to the new convergence rate given in Theorem 7.2, the order of complexity

of O
��

L
µ +

L2
x y

µ2

�

ln
�1
ε

�

�

is obtained when L =max{Lx , L y} and µ=min{µx ,µy},

which is more informative in comparison with the above-mentioned one. More-
over, by providing some example, we show that the given convergence rate is
exact for one iteration.

The goal of this work is not to achieve the optimal algorithmic complexity for
the class of saddle point problems introduced above. Rather, we have the more
modest goal of giving the best possible worst-case complexity analysis of the gradi-
ent descent-ascent method (Algorithm 7.1). It is important to note that there are
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accelerated gradient descent-ascent methods with better worst-case complexity
than Algorithm 7.1; see e.g. [LJJ20, WL20]. In particular, the accelerated meth-

ods may be shown to have a worst-case complexity O
�
s

L2
x
µ2

x
+

L2
x y

µxµy
+

L2
y

µ2
y
· ln

�1
ε

�

�

,

which may be compared to the best-known lower complexity bound

O
�
s

Lx
µx
+

L2
x y

µxµy
+

L y
µy
· ln

�1
ε

�

�

for the class of pure first-order algorithms [ZHZ22].

The chapter is organized as follows. First, we present basic definitions and
preliminaries used to establish the results. Section 7.2 is devoted to the study of
the linear convergence of Algorithm 7.1. In Section 7.3, we study the linear con-
vergence of the gradient descent-ascent method without strong convexity. Indeed,
we let F ∈ F(Lx , L y , Lx y , 0, 0) and give some necessary and sufficient conditions
for the linear convergence. Moreover, we derive a convergence rate under this
setting.

Notation

Let X ⊆ Rn. We denote the distance function to X by dX (x) := inf x̄∈X ∥x − x̄∥ and
the set-valued mapping ΠX (x) stands for the projection of x on X , i.e., ΠX (x) :=
{y ∈ X : ∥x − y∥= dX (x)}; see also Definition 2.5.

It is worth mentioning that, under the assumptions of Theorem 2.37, the set
�

(x i; g i; f i)
	

i∈I is interpolable with an L-smooth µ-strongly concave function if
and only if for any i, j ∈ I, we have

1

2(1−
µ
L )

�

1
L



g i − g j




2
+µ



x i − x j




2
+ 2µ

L




g j − g i , x j − x i
�

�

≤ − f i + f j +



g j , x i − x j
�

.

(7.3)

7.2 The gradient descent-ascent method

In this section, we study the convergence rate of gradient descent-ascent method
when F ∈ F(Lx , L y , Lx y ,µx ,µy) with min{µx ,µy} > 0. Indeed, we investigate
the worst-case behavior of one step of Algorithm 7.1 in terms of distance to the
unique saddle point (x⋆, y⋆). Let (x1, y1) be generated by the algorithm using the
starting point (x0, y0). The worst-cast convergence rate of Algorithm 7.1 is given
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by the solution of the following abstract optimization problem:

max
∥x1 − x⋆∥2 + ∥y1 − y⋆∥2

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2

s. t. (x1, y1) is generated by Algorithm 7.1 w.r.t. F, x0, y0 (7.4)

(x⋆, y⋆) is the unique saddle point of problem (7.1)

F ∈ F(Lx , L y , Lx y ,µx ,µy)

x0 ∈ Rn, y0 ∈ Rm.

In problem (7.4), F, x0, x1, x⋆, y0, y1, y⋆ are decision variables and µx , Lx ,µy , L y ,
Lx y , t are fixed parameters. As it is mentioned in Chapter 3, problem (7.4) seems
completely intractable, but its solution may in fact be approximated using a suit-
able semidefinite programming (SDP) problem, as shown below. Suppose that

F i, j = F(x i , y j) i, j ∈ {0,1,⋆},

G i, j
x =∇x F(x i , y j) i, j ∈ {0,1,⋆},

G i, j
y =∇y F(x i , y j) i, j ∈ {0,1,⋆},

where indices {0, 1,⋆} refers to the starting point, the point generated by Algo-
rithm 7.1 and the saddle point of the problem, respectively. Note that due to the
the necessary and sufficient conditions for convex-concave saddle point problems,
we have

G⋆,⋆x = 0, G⋆,⋆y = 0.
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By using Theorem 2.37, problem (7.4) may be relaxed as a finite dimensional
optimization problem,

max
∥x1 − x⋆∥2 + ∥y1 − y⋆∥2

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2

s. t. {(x0; G0,k
x ; F0,k), (x1; G1,k

x ; F1,k), (x⋆; G⋆,kx ; F⋆,k)} satisfy (2.4) for

k ∈ {0, 1,⋆} w.r.t. µx , Lx

{(y0; Gk,0
y ; F k,0), (y1; Gk,1

y ; F k,1), (y⋆; Gk,⋆
y ; F k,⋆)} satisfy (7.3) for

k ∈ {0, 1,⋆} w.r.t. µy , L y (7.5)

∥Gk,i
x − Gk, j

x ∥ ≤ Lx y∥y i − y j∥, i, j, k ∈ {0,1,⋆}

∥G i,k
y − G j,k

y ∥ ≤ Lx y∥x i − x j∥, i, j, k ∈ {0, 1,⋆}

x1 = x0 − tG0,0
x

y1 = y0 + tG0,0
y ,

G⋆,⋆x = 0, G⋆,⋆y = 0.

In problem (7.5), {(x i; G i, j
x ; F i, j)} and {(y i; G j,i

y ; F j,i)} (i, j ∈ {0, 1,⋆}) are decision
variables. We may assume that x⋆ = 0 and y⋆ = 0 as Algorithm 7.1 is invariant
under translation. By elimination, problem (7.5) may be reformulated as follows,

max
∥x0 − tG0,0

x ∥
2 + ∥y0 + tG0,0

y ∥
2

∥x0∥2 + ∥y0∥2

s. t. {(x0; G0,k
x ; F0,k), (x0 − tG0,0

x ; G1,k
x ; F1,k), (0; G⋆,kx ; F⋆,k)} satisfy (2.4) for

k ∈ {0,1,⋆} w.r.t. µx , Lx

{(y0; Gk,0
y ; F k,0), (y0 + tG0,0

y ; Gk,1
y ; F k,1), (0; Gk,⋆

y ; F k,⋆)} satisfy (7.3) for

k ∈ {0,1,⋆} w.r.t. µy , L y (7.6)

∥Gk,0
x − Gk,1

x ∥ ≤ Lx y∥tG0,0
y ∥, k ∈ {0,1,⋆}

∥G0,k
y − G1,k

y ∥ ≤ Lx y∥tG0,0
x ∥, k ∈ {0,1,⋆}

∥Gk,0
x − Gk,⋆

x ∥ ≤ Lx y∥y0 − y⋆∥, k ∈ {0,1,⋆}

∥G0,k
y − G⋆,ky ∥ ≤ Lx y∥x0 − x⋆∥, k ∈ {0, 1,⋆}

∥Gk,1
x − Gk,⋆

x ∥ ≤ Lx y∥y0 + tG0,0
y − y⋆∥, k ∈ {0,1,⋆}

∥G1,k
y − G⋆,ky ∥ ≤ Lx y∥x0 − tG0,0

x − x⋆∥, k ∈ {0, 1,⋆}

G⋆,⋆x = 0, G⋆,⋆y = 0.

https://w.r.t.xn--x-lmb/
https://w.r.t.xn--y-lmb/
https://w.r.t.xn--x-lmb/
https://w.r.t.xn--y-lmb/
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To approximate the solution of problem (7.6), we reformulate it as a semidef-
inite program by using the Gram matrix of the unknown vectors in the problem.
Indeed, we form the Gram matrices X and Y corresponding to {(x i; G i, j

x )} and
{(y i; G j,i

y )} (i, j ∈ {0,1,⋆}), respectively. This results in an SDP problem, as long
as we view the value ∥x0 − x⋆∥2 + ∥y0 − y⋆∥2, that appears in the denominator
of the objective of problem (7.6), as a fixed parameter. For this reason we may
indeed view problem (7.6) as an SDP problem in the positive semidefinite matrix
variables X and Y .

For the convenience of the analysis, we investigate the linear convergence of
Algorithm 7.1 in terms of L = max{Lx , L y} and µ = min{µx ,µy}. Before we
present the main theorem in this section, we need to present a lemma.

Lemma 7.1. Let 0< µ≤ L, c ≥ 0 and let I =
�

0, 2µ
µL+c2

�

. Suppose that the function
u : I → R given by

u(t) = 1
2

�

L2 +µ2 + 2c2
�

t2 − (L +µ)t + 1
2(L −µ)t

Æ

(Lt +µt − 2)2 + 4c2 t2.

Then u is convex on I and u(I) ⊆ [−1,0).

Proof. Consider the function v : I → R given by

v(t) =
�

L2 +µ2 + 2c2
�

t + (L −µ)
Æ

(Lt +µt − 2)2 + 4c2 t2.

The function v is convex and positive on I . By elementary calculus, one can show
that v′(0) > 0. So v is increasing on I due to the convexity. As the product
of positive monotone convex functions is a convex function, the function t 7→
t v(t) is also convex, which implies the convexity of u. Indeed, u is strictly convex
on I . Since strictly convex functions attain their maximum on endpoints of a
given interval, u(t) < max{u(0), u( 2µ

µL+c2 )} = 0 for t ∈ I . It remains to show that
mint∈I u(t)≥ −1. This follows from the point that

u(t)≥ 1
2

�

L2 +µ2
�

t2 − (L +µ)t ≥ −1
2

�

1+ 2Lµ
L2+µ2

�

≥ −1,

and the proof is complete.

By the weak duality theorem for SDP, one may demonstrate an upper bound
for the optimal value of the SDP problem (7.6), by constructing a feasible solu-
tion to its dual problem, i.e. feasible dual multipliers for the constraints of problem
(7.6). This is done in the next theorem. In the proof, the correct value of the dual
multipliers are simply given, and their correctness is verified. The correct values
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were obtained by solving the SDP problem (7.6) repeatedly for different numeri-
cal values of the parameters, and noting the (numerical) optimal dual multiplier
values. Based on these values, it was possible to deduce the analytical expressions
for the multipliers. For this reason, the proof was found in a computer-assisted
way, but it does not rely on any numerical calculations. Having said that, the
proof involves a long identity, given in full in Appendix A.2 to this chapter, that is
so long that it could only be obtained in a computer-assisted way.

Theorem 7.2. Let F ∈ F(Lx , L y , Lx y ,µx ,µy). Suppose that L =max{Lx , L y} and

µ = min{µx ,µy} > 0. If t ∈
�

0, 2µ
µL+L2

x y

�

, then Algorithm 7.1 generates (x1, y1)

such that

∥x1 − x⋆∥2 + ∥y1 − y⋆∥2 ≤ α
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

, (7.7)

where

α= 1+ 1
2

�

L2 +µ2 + 2L2
x y

�

t2 − (L +µ)t + 1
2(L −µ)t

Ç

(Lt +µt − 2)2 + 4L2
x y t2.

Proof. As mentioned earlier, we may assume without loss of generality that x⋆ = 0
and y⋆ = 0. By assumption, F(·, y) ∈ Fµ,L(Rn) and F(x , ·) ∈ Fµ,L(Rm) for any
fixed x , y . Suppose that Lx y ̸= 0. Without loss of generality, we may also assume
that Lx y = 1, by replacing F by 1

Lx y
F . This follows from the observation that

Algorithm 7.1 generates the same point (x1, y1) for the problem

min
x∈Rn

max
y∈Rm

1
Lx y

F(x , y),

with the step length Lx y t. Moreover, one has 1
Lx y

F ∈ F( Lx
Lx y

,
L y
Lx y

, 1, µx
Lx y

,
µy
Lx y
) if

and only if F ∈ F(Lx , L y , Lx y ,µx ,µy). Now let t ∈
�

0, 2µ
µL+1

�

and define (the
multipliers):

ᾱ= 1+ 1
2

�

L2 +µ2 + 2
�

t2 − (L +µ)t + 1
2(L −µ)t

Æ

(Lt +µt − 2)2 + 4t2,

β =
Æ

(Lt +µt − 2)2 + 4t2, γ1 =
t(t2(2+L2+Lµ)−t(3L+µ)+(Lt−1)β+2)

β ,

γ2 =
t(t2(2+µ2+Lµ)−t(3µ+L)+(1−µt)β+2)

β , γ3 =
t2(β+Lt−µt)

2β .

It is readily verified that γ1,γ2,γ3 ≥ 0, but since this calculation is somewhat
tedious we present it in Appendix A.1. Moreover, Lemma 7.1 implies that ᾱ ∈
[0, 1).
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The idea of the proof is now as follows: we first establish that, for any feasible
solution of the SDP problem (7.6), it holds that



x0 − tG0,0
x





2
+




y0 + tG0,0
y







2
− ᾱ

�


x0




2
+


y0




2�≤ 0. (7.8)

We do this by establishing an algebraic identity for the left-hand side of the
inequality (7.8). The first and last terms of this identity (shown in full in Appendix
A.2 to this chapter) are as follows:



x0 − tG0,0
x





2
+




y0 + tG0,0
y







2
− ᾱ

�


x0




2
+


y0




2
�

= −γ1

�

F0,0 − F ⋆,0 −



G⋆,0x , x0
�

− L
2(L−µ)

�

1
L



G0,0
x − G⋆,0x





2
+µ



x0




2 − 2µ
L




G⋆,0x − G0,0
x ,−x0

�

�

�

...

− t(β+Lt−µt)2

4(L−µ)β





G0,0
y − G⋆,0y − G0,⋆

y







2
.

Note that the first term on the right-hand-side is indeed nonpositive, since γ1 ≥ 0,
and the expression in brackets is nonnegative at any feasible solution of the SDP
problem (7.6), since it corresponds to one of the constraints in (7.6). The last term
is nonpositive as well, since it is the product of a nonpositive multiplier with a
squared expression. The remaining terms in the identity are similarly nonpositive
(see Appendix A.2), proving the inequality (7.8). All that remains is to recognize
that, in (7.8), G0,0

x corresponds to ∇x F(x0, y0), so that x0− tG0,0
x corresponds to

x1, etc. This yields the statement of the theorem, after rescaling to remove the
assumption Lx y = 1.

One may wonder how we obtained the (analytical) expression for α in Theo-
rem 7.2. Consider the optimization problem

min
x∈Rn

f (x), (7.9)

where f ∈ Fµ,L . It is known that the quadratic function q(x) = x TQx with
λmax(Q) = L and λmin(Q) = µ attains the worst-case convergence rate for the
gradient method; see e.g. [dKGT17]. We guessed that this property may hold for
problem (7.1) and we investigated the bilinear saddle point problem

min
x∈R2

max
y∈R2

1
2 x T

�

Lx 0
0 µx

�

x + x T

�

0 Lx y

Lx y 0

�

y − 1
2 y T

�

L y 0
0 µy

�

y, (7.10)



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 128PDF page: 128PDF page: 128PDF page: 128

112

where Lx ≥ µx > 0, L y ≥ µy > 0 and Lx y are fixed parameters and we derived
the worst case convergence of Algorithm 7.1 with respect to this problem. Our nu-
merical experiments showed that the derived convergence rate is the same as the
optimal value of the semidefinite programming problem corresponding to prob-
lem (7.6). Moreover, as a by-product, we exhibit that the convergence rate (7.7)
is exact for one iteration by using problem (7.10); see Proposition 7.4.

Theorem 7.2 provides some new information concerning Algorithm 7.1. Firstly,
Theorem 7.2 improves the known convergence factor in the literature; see our
discussion in Introduction. In addition, it investigates the convergence rate for
a step length in a larger interval. Secondly, it does not assume the second or-
der continuous differentiability of F , which is commonly used for deriving a lo-
cal convergence rate; see [LS19, MNG17, ZWLG22]. Finally, the given conver-
gence rate incorporates three parameter µ = min{µx ,µy}, L = max{Lx , L y}
and Lx y , which is more informative in comparison with the results in the lit-
erature mostly given in terms of µ = min{µx ,µy} and L = max{Lx , L y , Lx y};
see [MOP20a, ZWLG22, ZHZ22] and references therein. Even if one considers
L = max{Lx , L y , Lx y} and µ = min{µx ,µy}, convergence rate (7.7) dominates
(7.2). This follows from that for t ∈

�

0, µ2L2

�

, one has

�

1+ 4L2 t2 − 2µt
�

−
�

1+ 1
2

�

3L2 +µ2
�

t2 − (L +µ)t + 1
2 (L −µ)t

Æ

(Lt +µt − 2)2 + 4L2 t2
�

≥ (2L2 + Lµ−µ2)t2 ≥ 2L2 t2,

where the first inequality results from
p

(Lt +µt − 2)2 + 4L2 t2 ≤ (2 − Lt −
µt)+2Lt. In addition, in this case, the step length can take value in a larger inter-
val as

�

0, µ2L2

�

⊆
�

0, 2µ
L(L+µ)

�

. Moreover, Conjecture 7.6 discusses the convergence
rate in terms of Lx , L y , Lx y ,µx ,µy .

The next proposition gives the optimal step length with respect to the worst
case convergence rate.

Proposition 7.3. Let F ∈ F(Lx , L y , Lx y ,µx ,µy). If L = max{Lx , L y} and µ =
min{µx ,µy}> 0, then the optimal step length for Algorithm 7.1 with respect to the
bound (7.7) is

t⋆ =
2
�

(L+µ)
q

L2
x y+Lµ+Lx y (µ−L)

�

�

4L2
x y+(L+µ)2

�

q

L2
x y+Lµ

. (7.11)

Moreover, the convergence rate with respect to t⋆ is

α⋆ =
8Lx y(L2−µ2)

q

Lµ+L2
x y+(L2−µ2)2+16L2

x y

�

Lµ+L2
x y

�

�

(L+µ)2+4L2
x y

�2 . (7.12)
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Proof. Let α :
h

0, 2µ
µL+L2

x y

i

→ R given by

α(t) = 1+ 1
2

�

L2 +µ2 + 2L2
x y

�

t2−(L+µ)t+ 1
2(L−µ)t

Ç

(Lt +µt − 2)2 + 4L2
x y t2.

By Lemma 7.1, α is a strictly convex function on its domain. By doing some
algebra, one can verify that α′(t⋆) = 0, which implies that t⋆ is the minimum.

If Lx y = 0, problem (7.1) reduces to a separable optimization problem. In-
deed, the variables x and y are independent. Under this assumption, the optimal
step length given by Proposition 7.3 is t⋆ = 2

L+µ , which is the well-known optimal
step length for the optimization problem

min
x∈Rn

f (x),

where f ∈ Fµ,L; see [Nes18, Theorem 2.1.15]. Moreover, the convergence rate

corresponding to t⋆ is α⋆ =
�

L−µ
L+µ

�2
. By some algebra, one can show that under the

assumptions of Proposition (7.3), Algorithm 7.1 has a complexity of

O
��

L
µ +

L2
x y

µ2

�

ln
�1
ε

�

�

. Note that the lower iteration complexity bound for first-

order methods with L =max{Lx , L y} andµ=min{µx ,µy} isΩ
�s

L
µ +

L2
x y

µ2 ln
�1
ε

�

�

;

see [ZHZ22].
As mentioned earlier, we calculated the convergence rate by using problem

(7.10). The next proposition states that the bound (7.7) is tight for some class of
bilinear saddle point problems.

Proposition 7.4. Let F ∈ F(Lx , L y , Lx y ,µx ,µy). Suppose that Lx = L y and

µ = min{µx ,µy} > 0. If t ∈
�

0, 2µ
µL+L2

x y

�

, then convergence rate (7.7) is exact

for one iteration.

Proof. To establish the proposition, it suffices to introduce a problem for which
Algorithm 7.1 generates (x1, y1)with respect to the initial point (x0, y0) such that

∥x1 − x⋆∥2 + ∥y1 − y⋆∥2 = α
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

,

where α is the convergence rate factor given in Theorem 7.2. Consider problem
(7.10). Due to the symmetry of Algorithm 7.1 and the class of problems, we may
assume µx ≥ µy . Moreover, without loss of generality, we can take Lx y = 1;
see our discussion in the proof of Theorem 7.2. Suppose L = Lx , µ = µy and
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β =
p

(Lt +µt − 2)2 + 4t2. One can verify that Algorithm 7.1 with the initial
point

x0
1 = 0, x0

2 =
r

2−t(L+µ)+β
2β ,

y0
1 = −t

r

2
β(2−t(L+µ)+β) , y0

2 = 0.

generates (x1, y1) with the desired equality.

One may wonder why we stress on one iteration in Proposition 7.4. Based on
our numerical results if Lx y > 0, under the setting of Theorem 7.2, we observed
that

∥xk − x⋆∥2 + ∥yk − y⋆∥2 < αk
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

, k ≥ 2,

for some t ∈
�

0, 2µ
µL+L2

x y

�

. The reason may be related to the fact that the vector

field
�

∇x F(x , y) −∇y F(x , y)
�T

is not conservative.
It may be of interest whether inequality (7.7) may hold without strong convex-

ity. By removing strong convexity, the solution set may not be singleton. Hence,
we investigate distance to the solution set, that is, if there exists 0≤ α < 1 with

d2
S⋆((x

1, y1))≤ αd2
S⋆((x

0, y0)).

The next proposition says in general the answer is negative. Indeed, it gives an
example with min{µx ,µy}= 0 and a unique saddle point for which

∥x1 − x⋆∥2 + ∥y1 − y⋆∥2 ≥ α
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

,

for some α ≥ 1, no matter how close (x0, y0) is to the unique saddle point and
which positive step length t is taken. In the next proposition, we may assume
without loss of generality µx = 0 and make an example analogous to that given
in Proposition 7.4.

Proposition 7.5. Let L, Lx y ,µy , t, r > 0 be given. Then there exist α ≥ 1 and a
function F ∈ F(L, L, Lx y , 0,µy) with the unique saddle point (x⋆, y⋆) and (x1, y1)
such that, for (x2, y2) generated by Algorithm 7.1, we have

∥x2 − x⋆∥2 + ∥y2 − y⋆∥2 ≥ α
�

∥x1 − x⋆∥2 + ∥y1 − y⋆∥2
�

,

and ∥x1 − x⋆∥2 + ∥y1 − y⋆∥2 = r2.
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Proof. As discussed before, we may assume Lx y = 1. Consider the bilinear saddle
point problem,

min
x∈R2

max
y∈R2

F(x , y) = 1
2 x T

�

L 0
0 0

�

x + x T

�

0 1
1 0

�

y − 1
2 y T

�

L 0
0 µy

�

y.

It is clear that F ∈ F(L, L, Lx y , 0,µy), and the unique saddle point is (x⋆, y⋆) =
(0,0). Suppose that

x1
1 = 0, x1

2 = r
r

2−t L+β
2β ,

y1
1 = −r t

r

2
β(2−t L+β) , y1

2 = 0,

where β =
p

(Lt − 2)2 + 4t2. One can verify Algorithm 7.1 generates (x2, y2)
with

∥x2 − x⋆∥2 + ∥y2 − y⋆∥2 ≥ α
�

∥x1 − x⋆∥2 + ∥y1 − y⋆∥2
�

= αr2,

where α= 1+ 1
2

�

L2 + 2
�

t2− Lt + 1
2 Lt

p

(Lt − 2)2 + 4t2. By Proposition 7.3, one
can infer that α≥ 1.

Note that in Proposition 7.5 r can take any positive value. By Proposition 7.4,
one can infer that the convergence rate factor for bilinear saddle point problems
may not be improved for one iteration since the given example is a bilinear saddle
point problem. Furthermore, the given convergence rate factor is tight whether

Lx = L y . As discussed in [WL20], the function H(x , y) = F
�

4
r

L y
Lx

x , 4
r

Lx
L y

y
�

shares the same smoothness constants with respect to x and y , that is, ∇x H(·, y)
and∇y H(x , ·) are Lipschitz continuous with the same modulus

Æ

Lx L y . However,
the gradient methods are not invariant under scaling; see [BV04, Chapter 9].
Hence, we may lose the generality of our discussion by assuming this condition.

Based on our numerical results and analysis of problem (7.10), we conjecture
the following (exact) convergence rate of Algorithm 7.1 in terms of Lx , L y , Lx y ,µx ,
µy . Due to the symmetry of Algorithm 7.1, we may assume that Lx ≥ L y . More-
over, Proposition 7.4 implies that bound (7.7) is tight when µy ≤ µx . Hence, we
need only consider µy > µx .

Conjecture 7.6. Let F ∈ F(Lx , L y , Lx y ,µx ,µy). Suppose that µy > µx > 0,
max{Lx , L y}= Lx and

c = 1
2 (L

2
y +µ

2
x )t − (L y +µx ) +

1
2 (L y −µx )

q

(L y t +µx t − 2)2 + 4L2
x y t2,

µ̄=
c+2Lx−L2

x t+Lx L2
x y t2−(c+Lx (2−Lx t))

Ç

1+t(c+t L2
x y )

t Lx y (c+t L2
x y+Lx (2−Lx t))

,

α(µ, L, Lx y , t) = 1+ 1
2

�

L2 +µ2 + 2L2
x y

�

t2 − (L +µ)t + 1
2 (L −µ)t

q

(Lt +µt − 2)2 + 4L2
x y t2.
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Then, one of the following scenarios holds.

a) Assume that µxµy(Lx − L y)≥ L2
x y

�

µy −µx

�

and t ∈
�

0,
2µy

Lxµy+L2
x y

�

.

i) If µy ≤ µ̄, then

∥x1−x⋆∥2+∥y1− y⋆∥2 ≤ α(µy , Lx , Lx y , t)
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

.

ii) If µy ≥ µ̄, then

∥x1−x⋆∥2+∥y1− y⋆∥2 ≤ α(µx , L y , Lx y , t)
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

.

b) Assume that µxµy(Lx − L y)≤ L2
x y

�

µy −µx

�

and t ∈
�

0, 2µx
L yµx+L2

x y

�

.

i) If µy ≤ µ̄, then

∥x1−x⋆∥2+∥y1− y⋆∥2 ≤ α(µy , Lx , Lx y , t)
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

.

ii) If µy ≥ µ̄, then

∥x1−x⋆∥2+∥y1− y⋆∥2 ≤ α(µx , L y , Lx y , t)
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

.

Although we have extensive numerical evidence supporting Conjecture 7.6,
we have been unable to prove either part a) or part b). To be more precise, we
have verified numerically that the optimal value of the SDP problem (7.6) and
problem (7.10) corresponds to the expressions in Conjecture 7.6 for many dif-
ferent numerical values of the parameters Lx , L y , Lx y , µx , and µy , but we were
unable to derive analytical expressions for the dual multipliers of the SDP problem
(7.6) that would prove the conjecture.

7.2.1 Numerical illustration

In this section we provide randomly generated examples to compare the optimal
step length (7.11) given in this chapter to the known step length t = µ/(4L2) for
the bilinear problem

min
x∈R5

max
y∈R4

1
2 x T Ax x + x T Ax y y − 1

2 y T Ay y,

where Ax and Ay are symmetric positive definite matrices. Moreover, the instances
are constructed such that the spectra of Ax and Ay are contained in the inter-
val [0.5, 5]. For this class of instances, one has L = max{λmax(Ax),λmax(Ay)} ∈
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[0.5,5] and µ = min{λmin(Ax),λmin(Ay)} ∈ [0.5, L]. The matrix Ax y ∈ R5×4

has entries chosen uniformly at random from [0,1], and subsequently we set
Lx y = ∥Ax y∥2. By construction, the solution (saddle point) is (x⋆, y⋆) = (0,0).
The starting points x0 and y0 are randomly drawn unit vectors so that the initial
condition ∥x0 − x⋆∥2 + ∥y0 − y⋆∥2 = 2 is satisfied.

0 1 2 3 4 5 6
0

0.4

0.8

1.2

1.6

2

Iteration (k)M
ea

n
va

lu
e

of
∥x

k
−

x⋆
∥2
+
∥y

k
−

y⋆
∥2

t given by (7.11)
t = µ/(4L2)

Figure 7.1: Mean values of ∥xk − x⋆∥2 + ∥yk − y⋆∥2 for 100 randomly generated
instances for each iteration k using the two different step lengths t

In Figure 7.1 we show average values (over 100 randomly generated instances)
for the convergence indicator ∥xk − x⋆∥2 + ∥yk − y⋆∥2 after k iterations, for the
two step lengths.1 Note that our new step length (7.11) gives a clear improvement
over the known step length µ/(4L2).

7.3 Linear convergence without strong convexity

In this section, we study the linear convergence of Algorithm 7.1 without assuming
strong convexity. Indeed, we suppose that F ∈ F(Lx , L y , Lx y , 0, 0) and we propose
some necessary and sufficient conditions for the linear convergence. This subject
has received some attention in recent years and some sufficient conditions have

1The 100 random instances and starting points that we generated to produce Figure 7.1 may be
found on GitHub; see: https://github.com/molsemzamani/Bilinear-Minimax

https://github.com/molsemzamani/Bilinear-Minimax
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been proposed in [DH19, ZWLG22] under which Algorithm 7.1 enjoys local linear
convergence rate or it is linearly convergent for bilinear saddle point problems.
This topic has been investigated extensively in the context of optimization. The
interested reader can refer to [AdKZ23a, BNPS17, LT93, NNG19] alongside with
Chapter 5 and references therein. In this study, we extend the quadratic gradient
growth property introduced in [LT93] for saddle point problems.

Recall that we denote the nonempty solution set of problem (7.1) by S⋆. As we
do not assume the strong convexity (concavity), S⋆ may not be singleton. Note
that S⋆ is a closed convex set under our assumptions. Recall that ΠS⋆ ((x , y))
denotes the projection of (x , y) onto S⋆.

Definition 7.7. Let µF > 0. A function F has a quadratic gradient growth if for
any x ∈ Rn and y ∈ Rm,

〈∇x F(x , y), x − x⋆〉 − 〈∇y F(x , y), y − y⋆〉 ≥ µF d2
S⋆((x , y)), (7.13)

where (x⋆, y⋆) = ΠS⋆ ((x , y)).

Note that if we set y = y⋆ in (7.13), we have

〈∇x F(x , y⋆), x − x⋆〉 ≥ µF∥x − x⋆∥2.

Hence, Lx -smoothness implies that µF ≤ Lx . Consequently, due to the symmetry,
we have µF ≤ min{Lx , L y}. The next proposition states that the quadratic gra-
dient growth condition is weaker than the strong convexity-strong concavity. In-
deed, the strong convexity-strong concavity implies the quadratic gradient growth
property.

Proposition 7.8. Let F ∈ F(Lx , L y , Lx y ,µx ,µy). If min{µx ,µy}> 0, then F has a
quadratic gradient growth with µF =min{µx ,µy}.

Proof. Under the assumptions, problem (7.1) has a unique solution (x⋆, y⋆) and
∇x F(x⋆, y⋆) = 0 and∇y F(x⋆, y⋆) = 0. Letµ=min{µx ,µy} and L =max{Lx , L y}.
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Suppose that (x , y) ∈ Rn ×Rm. By Theorem 2.37, we have

0≤
�

F(x⋆, y)− F(x , y) + 〈∇x F(x , y), x − x⋆〉 − L
2(L−µ)

�

1
L ∥∇x F(x⋆, y)−∇x F(x , y)∥2

+µ∥x − x⋆∥2 − 2µ
L 〈∇x F(x , y)−∇x F(x⋆, y), x − x⋆〉

�

�

+
�

F(x , y⋆)− F(x⋆, y⋆)−

L
2(L−µ)

�

1
L ∥∇x F(x , y⋆)∥2 +µ∥x − x⋆∥2 − 2µ

L 〈∇x F(x , y⋆), x − x⋆〉
�

�

+
�

F(x , y)−

F(x , y⋆)−



∇y F(x , y), y − y⋆
�

− L
2(L−µ)

�

1
L



∇y F(x , y⋆)−∇y F(x , y)




2
+µ∥y − y⋆∥2

− 2µ
L




∇y F(x , y⋆)−∇y F(x , y), y − y⋆
�

�

�

+
�

F(x⋆, y⋆)− F(x⋆, y)− L
2(L−µ)

�

1
L



∇y F(x⋆, y)




2
+µ∥y − y⋆∥2 − 2µ

L




∇y F(x⋆, y), y⋆ − y
�

�

�

= −µ
2

L−µ





(x − x⋆)− 1
2µ (∇x F(x , y) +∇x F(x , y⋆)−∇x F(x⋆, y))







2
−

1
4(L−µ) ∥∇x F(x , y)−∇x F(x , y⋆)−∇x F(x⋆, y)∥2−

µ2

L−µ





(y − y⋆) + 1
2µ

�

∇y F(x , y)−∇y F(x , y⋆) +∇y F(x⋆, y)
�







2
−

1
4(L−µ)



∇y F(x , y)−∇y F(x , y⋆)−∇y F(x⋆, y)




2−

µ
�

∥x − x⋆∥2 + ∥y − y⋆∥2
�

+ 〈∇x F(x , y), x − x⋆〉 −



∇y F(x , y), y − y⋆
�

.

Hence,

µ
�

∥x − x⋆∥2 + ∥y − y⋆∥2
�

≤ 〈∇x F(x , y), x − x⋆〉 −



∇y F(x , y), y − y⋆
�

,

and the proof is complete.

Note that the converse of Proposition 7.8 does not hold necessarily. Consider
the following saddle point problem

min
x∈R

max
y∈R

F(x , y) := f (x + y)− 2y2, (7.14)

where

f (s) =











0 |s| ≤ 1

(s− 1)2 s > 1

(s+ 1)2 s < −1.

It is seen that F is not strongly convex-strongly concave and the solution set of
problem (7.14) is {(x , 0) : |x | ≤ 1}. By doing some algebra, one can check that
F has a quadratic gradient growth with µF = 1 while it is not strongly convex
with respect to the first component. For the case that F(·, y) is neither strongly
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convex nor is F(x , ·) strongly concave, one may consider uncoupled problem
minx∈Rmaxy∈R f (x)− f (y).

In what follows, by using performance estimation, we establish that Algo-
rithm 7.1 enjoys the linear convergence whether F ∈ F(Lx , L y , Lx y , 0, 0) has
a quadratic gradient growth. Without loss of generality, we may assume that
(0, 0) = ΠS⋆

�

(x0, y0)
�

. To establish the linear convergence, it suffices to show
that

d2
S⋆((x

1, y1))≤ ∥x1∥2 + ∥y1∥2 ≤ αd2
S⋆((x

0, y0)),

for some α ∈ [0, 1). Similarly to Section 7.2, we formulate the following opti-
mization problem

max
∥x0 − tG0,0

x ∥
2 + ∥y0 + tG0,0

y ∥
2

∥x0∥2 + ∥y0∥2

s. t. {(x0; G0,k
x ; F0,k), (x0 − tG0,0

x ; G1,k
x ; F1,k), (0; G⋆,kx ; F⋆,k)} satisfy (2.4) for

k ∈ {0,1,⋆} w.r.t. µx = 0, Lx

{(y0; Gk,0
y ; F k,0), (y0 + tG0,0

y ; Gk,1
y ; F k,1), (0; Gk,⋆

y ; F k,⋆)} satisfy (7.3) for

k ∈ {0,1,⋆,∗} w.r.t. µy = 0, L y (7.15)

∥Gk,i
x − Gk, j

x ∥ ≤ Lx y∥y i − y j∥, i, j, k ∈ {0, 1,⋆}

∥G i,k
y − G j,k

y ∥ ≤ Lx y∥x i − x j∥, i, j, k ∈ {0, 1,⋆}

µF

�

∥x0∥2 + ∥y0∥2
�

≤ 〈G0,0
x , x0〉 − 〈G0,0

y , y0〉,

G⋆,⋆x = 0, G⋆,⋆y = 0.

Note that in the formulation (7.15), we only use a subset of constraints for the
performance estimation. In the next theorem, we prove the linear convergence of
Algorithm 7.1 when F has a quadratic gradient growth.

Theorem 7.9. Let F ∈ F(Lx , L y , Lx y , 0, 0) and L = max{Lx , L y}. Assume that F
has a quadratic gradient growth with µF > 0. If

t ∈
�

0, 2µF

LµF+2Lx y

p
µF (L−µF )+L2

x y

�

, then Algorithm 7.1 generates (x1, y1) such that

d2
S⋆((x

1, y1))≤ αd2
S⋆((x

0, y0)), (7.16)

where

α= t
�

2t Lx y

Æ

µF (L −µF ) +µF (Lt − 2) + t L2
x y

�

+ 1.

https://w.r.t.xn--x-lmb/
https://w.r.t.xn--y-lmb/
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Proof. The argument is similar to that of Theorem 7.2. It is seen that for any step
length t in the given interval, α ∈ [0,1). We may assume without loss of generality
Lx y = 1. By the assumptions, F(·, y) ∈ F0,L(Rn) and F(x , ·) ∈ F0,L(Rm) for any
fixed x , y . Suppose that

ᾱ= t
�

2t
Æ

µF (L −µF ) +µF (Lt − 2) + t
�

+ 1, β = t2
�

µF
p

L −µF +
p
µF

�

,

γ1 = t2
�

µFp
µF (L−µF )

+µF

�

, γ2 =
t2
�

µF (L−µF )+
p
µF (L−µF )

�

µF
,

γ3 = −
t2
�

µF (L+µF )+
p
µF (L−µF )

�

µF
+ βp

L−µF
+ 2t, γ4 =

1
2 t2

�
Æ

µF (L −µF ) + 1
�

.

One may readily verify that γ1,γ2,γ3,γ4 ≥ 0. By doing some algebra, one can
show that



x0 − tG0,0
x





2
+




y0 + tG0,0
y







2
− ᾱ

�


x0




2
+


y0




2�

+ γ1

�

F0,0 − F⋆,0 −



G⋆,0x , x0
�

−

1
2L



G0,0
x − G⋆,0x





2
�

+ γ2

�

F⋆,0 − F0,0 +



G0,0
x , x0

�

− 1
2L



G⋆,0x − G0,0
x





2
�

+ γ2

�

F0,⋆−

F⋆,⋆ − 1
2L



G0,⋆
x





2
�

+ γ1

�

F⋆,⋆ − F0,⋆ +



G0,⋆
x , x0

�

− 1
2L



G0,⋆
x





2
�

+ γ1

�

F0,⋆ − F0,0+

¬

G0,⋆
y , y0

¶

− 1
2L





G0,0
y − G0,⋆

y







2 �

+ γ2

�

F0,0 − F0,⋆ −
¬

G0,0
y , y0

¶

− 1
2L





G0,⋆
y − G0,0

y







2 �

+

γ2

�

− F⋆,0 + F⋆,⋆ − 1
2L





G⋆,0y







2 �

+ γ1

�

− F⋆,⋆ + F⋆,0 +
¬

G⋆,0y ,−y0
¶

− 1
2L





G⋆,0y







2 �

+

γ3

�




G0,0
x , x0

�

−
¬

G0,0
y , y0

¶

−µF

�


x0




2
+


y0




2 �
�

+ γ4

�



x0




2 −




G0,0
y − G⋆,0y







2�

+

γ4

�



x0




2 −




G0,⋆
y







2�

+ γ4

�


y0




2 −


G0,0
x − G0,⋆

x





2�

+ γ4

�


y0




2 −


G⋆,0x





2�

=− ζ1



x0 + ζ2G0,0
x − ζ3(G

0,⋆
x − G⋆,0x )





2 − ζ4



G0,0
x − G0,⋆

x − G⋆,0x





2−

ζ1





y0 − ζ2G0,0
y − ζ3(G

0,⋆
y − G⋆,0y )







2
− ζ4





G0,0
y − G⋆,0y − G0,⋆

y







2
≤ 0,

where the multipliers ζ1,ζ2,ζ3,ζ4 are given as follows

ζ1 = µF

�

βp
L−µF
−µF t2

�

, ζ2 =
β

2µF
p
µF t2 − 1

µF
, ζ3 =

t2
�p
µF (L−µF )+1

�

2µF t2 ,

ζ4 =
1
4

�

2t2(µF (L−µF )+1)p
µF (L−µF )

−
�

2µF t2(µF−L)+β
p

L−µF

�2

µF (L−µF )t2
p
µF (L−µF )

�

.

One can show by some algebra that ζ1,ζ4 ≥ 0. Hence, for any feasible solution
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of problem (7.15), we have



x0 − tG0,0
x





2
+




y0 + tG0,0
y







2

∥x0∥2 + ∥y0∥2
≤ ᾱ,

and the proof is complete.

We obtained the linear convergence by using quadratic gradient growth in
Theorem 7.9. The next theorem states that quadratic gradient growth property is
also a necessary condition for the linear convergence.

Theorem 7.10. If Algorithm 7.1 is linearly convergent for any initial point, then F
has a quadratic gradient growth for some µF > 0.

Proof. Let (x0, y0) ∈ Rn ×Rm and (x1, y1) be generated by Algorithm 7.1. Sup-
pose that (x⋆, y⋆) = ΠS⋆

�

(x1, y1
�

). As Algorithm 7.1 is linearly convergent, there
exist α ∈ [0,1) with

d2
S⋆((x

1, y1))≤ αd2
S⋆((x

0, y0))≤ α
�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

. (7.17)

By setting x1 = x0 − t∇x F(x0, y0) and y1 = y0 + t∇y F(x0, y0) in inequality
(7.17), we get

1−α
2t

�

∥x0 − x⋆∥2 + ∥y0 − y⋆∥2
�

≤



∇x F(x0, y0), x0 − x⋆
�

−



∇y F(x0, y0), y0 − y⋆
�

,

which implies that

µF d2
S⋆(x

0, y0)≤



∇x F(x0, y0), x0 − x⋆
�

−



∇y F(x0, y0), y0 − y⋆
�

,

for µF =
1−α
2t and the proof is complete.

7.4 Concluding remarks

In this chapter, we provided a new convergence rate for the gradient descent-
ascent method for saddle point problems. Furthermore, we gave some necessary
and sufficient conditions for the linear convergence without strong convexity. We
employed the performance estimation method for proving the results. For future
work, it would be interesting to consider the case where the variables x and y
in the saddle point problem are constrained to lie in given, compact convex sets,
since many saddle point problems fall in this category. In this case, one could use
the performance estimation framework to analyze other methods, e.g. proximal
type algorithms.
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Be less curious about people and more curious about ideas.

Marie Curie

8
On the convergence rate of the

difference-of-convex algorithm (DCA)

Preamble

In this chapter, we study the non-asymptotic convergence rate of the DCA (difference-
of-convex algorithm), also known as the convex–concave procedure, with two dif-
ferent termination criteria that are suitable for smooth and non-smooth decom-
positions, respectively. The DCA is a popular algorithm for difference-of-convex
(DC) problems and known to converge to a stationary point of the objective un-
der some assumptions. We derive a worst-case convergence rate of O(1/

p
N)

after N iterations of the objective gradient norm for certain classes of DC prob-
lems, without assuming strong convexity in the DC decomposition and give an
example which shows the convergence rate is exact. We also provide a new con-
vergence rate of O(1/N) for the DCA with the second termination criterion. Fur-
thermore, we study the convergence rate for the proximal gradient method. Addi-
tionally, we study the impact of using regularization in DCA. Moreover, we derive
a new linear convergence rate result for the DCA under the assumption of the
Polyak–Łojasiewicz inequality. The novel aspect of our analysis is that it employs
semidefinite programming performance estimation. This chapter is based on the

123
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paper [AdKZ23c], except for Section 8.2.2, 8.3.3, 8.3.4 and 8.5 that deals with an
example for DCA, studying the gradient descent method, studying the proximal
gradient method, and DCA with regularization, respectively.

8.1 Introduction

We consider the general difference-of-convex (DC) optimization problem,

inf f (x) := f1(x)− f2(x) (8.1)

s.t. x ∈ Rn,

where f1, f2 : Rn → (−∞,∞] are convex functions and f is an lower-
semicontinuous function on Rn to (−∞,∞]. Throughout the chapter, we as-
sume that the infimum in problem (8.1) is finite, and denote by f ⋆ a lower bound
of f on Rn.

DC problems appear naturally in many applications, e.g. power allocation
in digital communication systems [ASP14], production-transportation planning
[HT99a], location planning [CHJT98], image processing [LZOX15], sparse signal
recovering [GRC09], cluster analysis [BU18, BTU16], and supervised data classi-
fication [AFG12, LTN17], to name but a few.

This wide range of applications is to be expected, since some important classes
of nonconvex functions may be represented as DC functions. For instance, twice
continuously differentiable functions on any convex subset of Rn [Har59], and
continuous piece-wise linear functions [Mel86] may be written as DC functions.
Furthermore, every continuous function on a compact and convex set can be ap-
proximated by a DC function [HT99b, THH+98]. We refer the interested reader
to [HU85, THH+98] for more information on DC representable functions.

The celebrated Difference-of-Convex Algorithm (DCA), also known as the
convex-concave procedure, has been applied extensively to problem (8.1); see
[LTPD18, LB16, TA97] and the references therein. Algorithm 8.1 presents the
basic form of the DCA.

In the description of the DCA in Algorithm 8.1, (sub)gradients of f1 and f2
are assumed to be available at given points, the so-called black-box formulation.
The DCA is sometimes also presented as a primal-dual method, where a dual sub-
problem is solved to obtain the required (sub)gradients; see [LTPD18, LB16] for
further discussions of this topic. In recent years, some scholars have also extended
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Algorithm 8.1 DCA

Pick x0 ∈ Rn.
For k = 0, 1, . . . perform the following steps:

1. Choose gk
2 ∈ ∂ f2(xk).

2. Choose

xk+1 ∈ argminx∈Rn f1(x)− f2(x
k)− 〈gk

2 , x − xk〉. (8.2)

3. If the termination criteria are satisfied, then stop.

the DCA and proposed some new variations; see [GTT18, LZ19, LZS19, PRA17,
SS22].

The first convergence results for Algorithm 8.1 were given in [TA97, Theorem
3(iv)]. The authors showed that, if the sequence of iterates {xk} is bounded, then
each accumulation point of this sequence is a critical point of f .

Le Thi et al. [LTHPD18] established an asymptotic linear convergence rate of
{xk} under some conditions, in particular under the assumption that f satisfies the
Łojasiewicz gradient inequality at all stationary points. Recall that a differentiable
function f is said to satisfy this inequality at a stationary point a (∇ f (a) = 0), if
there exist constants θ ∈ (0,1), C > 0 and ε > 0 such that

| f (x)− f (a)|θ ≤ C∥∇ f (x)∥ if ∥x − a∥ ≤ ε, (8.3)

where the constant θ is called the Łojasiewicz exponent. This inequality is known
to hold, for example, for real analytic functions, but has been extended to include
classes of non-smooth functions as well by considering general sub-differentials
instead of gradients; see [BDL07, BST14], and the references therein.

The convergence rates established by Le Thi et al. [LTHPD18] depend on the
value of the Łojasiewicz exponent, as the following theorem shows. The theorem
stated here is a special case of Theorems 3.4 and 3.5 in [LTHPD18], to give a
flavor of the convergence results in [LTHPD18].

Theorem 8.1 (Theorems 3.4 and 3.5 in Le Thi et al. [LTHPD18]). Let f1 and f2 be
proper convex functions and let the domain of f be closed. Also assume that at least
one of f1 and f2 is strongly convex, and f1 or f2 is differentiable with locally Lipschitz
gradient in every critical point of the DC problem. Finally, assume the sequence {xk}
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is bounded, and let x∞ be a limit point of {xk}. Then x∞ is also a stationary point.
Moreover, if f satisfies the Łojasiewicz gradient inequality (8.3) at all stationary
points, then

1. if θ ∈ (1/2,1), then ∥xk − x∞∥ ≤ ck
1−θ

1−2θ for some c > 0.

2. if θ ∈ (0,1/2], then ∥xk − x∞∥ ≤ cqk for some c > 0 and q ∈ (0,1).

In particular, item 2 shows a linear convergence rate when θ ∈ (0,1/2]. Yen
et al. [YPWL12] had already shown linear convergence earlier for a much smaller
class of DC functions. We will present a complementary result to this theorem (see
Theorem 8.20 below), for the case θ = 1/2, where we show linear convergence of
the objective function values, and give explicit expressions for the constants that
determine the linear convergence rate. Moreover, we will relax the assumption of
a bounded sequence of iterates, and the assumption of strong convexity.

In the absence of conditions like the Łojasiewicz gradient inequality (8.3),
only weaker convergence rates are known for the DCA. In particular, Tao and An
[TA97, Proposition 2] and Le Thi et al. [LTPD21, Corollary 1] have shown an
O
�

1p
N

�

convergence rate after N iterations under suitable assumptions, as given
in the next theorem.

Theorem 8.2 (Corollary 1 in [LTPD21], Proposition 2 in [TA97]). If x∞ is a limit
point of the iteration sequence generated by the DCA, and at least one of f1 and f2
is strongly convex, i.e. , for some µ1,µ2 ≥ 0 such that µ1 +µ2 > 0,

x 7→ fi(x)−
µi

2
∥x∥2 is convex for i ∈ {1, 2},

then the series ∥xk − xk−1∥ converges, and, after N + 1 iterations,

N
∑

k=0

∥xk − xk−1∥2 ≤ 2( f (x0)− f (xN ))
µ1+µ2

,

and, consequently,

min
0≤k≤N

∥xk − xk−1∥ ≤
√

√2( f (x0)− f ⋆)
(µ1 +µ2)N

=O
�

1
p

N

�

.

We will derive some variants on this O
�

1p
N

�

convergence result in Corollary

8.7 and in Section 8.3.2, where we improve the constants in the O
�

1p
N

�

bounds.
We also show that we obtain the best possible constants, by demonstrating an
example where our bound in Corollary 8.7 is tight.
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Outline and further contributions of this chapter

The novel aspect of the analysis in this chapter is that we will apply performance
estimation to derive convergence rates. This chapter is organized as follows. In
Section 8.2 we review some definitions and notions from convex analysis, which
will be used in the following sections. We continue with a simple example to
show how DCA works in Section 8.2.2. We study the DCA for sufficiently smooth
DC decompositions in Section 8.3. By using performance estimation, we give
a convergence rate of O(1/

p
N) in Corollary 8.7, without any strong convexity

assumption, thus extending and complementing Le Thi et al. [LTPD21, Corollary
1]. We construct an example that shows this O(1/

p
N) bound is tight. Since

the first termination criterion is not suitable for the analysis of nonsmooth DC
compositions, we investigate the DCA with another stopping criterion in Section
8.4, and we show a convergence rate of O(1/N). This result is completely new to
the best of our knowledge. Furthermore, we investigate DCA with regularization
and derive a convergence rate for this version. Moreover, we discuss the best
choice of regularization parameter from worst-case complexity perspective. In
Section 8.6 we study the DCA when the objective function satisfies the Polyak-
Łojasiewicz inequality, and we derive a linear convergence rate in Theorem 8.20,
thereby refining some linear convergence results in Le Thi et al. [LTHPD18] as
described above.

8.2 Basic Definitions and Preliminaries

IR+ stands for the indicator function on R+ ∪ {∞}, i.e.,

IR+(x) =

(

1 x ≥ 0∪ {∞}

0 x < 0∪ {−∞}.
(8.4)

We denote the convex hull of X ⊆ Rn by co(X ). We adopt the conventions that,
for a, b, c, d ∈ R with c ̸= d and a ̸= 0, b

∞ = 0,0×∞= 0 and a∞+b
c∞−d∞ =

a
c−d .

Let L ∈ (0,∞] and µ ∈ (0,∞). We call an extended convex function f :
Rn→ (−∞,∞] L-smooth if for any x1, x2 ∈ Rn,

∥g1 − g2∥ ≤ L∥x1 − x2∥ ∀g1 ∈ ∂ f (x1), g2 ∈ ∂ f (x2).

Note that if L <∞, then f must be differentiable on Rn. In addition, any ex-
tended convex function is∞-smooth.
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Lemma 8.3. If −η≤ µ, then Fµ,L(Rn) + η2 ∥ · ∥
2 = Fµ+η,L+η(Rn).

Proof. First, we show the inclusion Fµ,L(Rn) + η2∥ · ∥
2 ⊆ Fµ+η,L+η(Rn). Let f ∈

Fµ,L . The (µ+η)-strong convexity of the function f + η2∥ · ∥
2 is immediate from

the definition. It is easily seen the inclusion holds when L = ∞. Hence, we
investigate L <∞. By L-smoothness, we have

f (y)≤ f (x) + 〈∇ f (x), y − x〉+ L
2∥y − x∥2.

By adding η2 ∥y∥
2 = η

2 ∥x∥
2 + 〈ηx , y − x〉+ η2 ∥y − x∥2 to the above inequality, we

get

f (y) + η2 ∥y∥
2 ≤ f (x) + η2∥x∥

2 + 〈∇ f (x) +ηx , y − x〉+ L+η
2 ∥y − x∥2,

which establishes (L + η)-smoothness f + η2∥ · ∥
2; see Theorem 2.15 in [Nes18].

Now, we establish the converse inclusion. Suppose that f ∈ Fµ+η,L+η(Rn). By the
definition, it follows that f − η2 ∥ · ∥

2 is µ-strongly convex. The L-smoothness of f
is proved similar to the former case and the proof is complete.

In the next lemma, we extend the descent lemma for DCA when L1 or L2 is
finite.

Lemma 8.4. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn) and let f = f1 − f2. If
g1 ∈ ∂ f1(x) and g2 ∈ ∂ f2(x), then

f ⋆ ≤ f (x)− 1
2(L1−µ2)

∥g1 − g2∥2.

Proof. If L1 =∞, the proof is immediate. Let L1 <∞. By L-smoothness and
strong convexity, we have

f1(y)≤ f1(x) + 〈g1, y − x〉+ L1
2 ∥y − x∥2,

f2(y)≥ f2(x) + 〈g2, y − x〉+ µ2
2 ∥y − x∥2,

for y ∈ Rn. By the above inequalities, we get

f (y)≤ f (x) + 〈g1 − g2, y − x〉+ L1−µ2
2 ∥y − x∥2.

Hence, by taking minimum on both sides of the last inequality with respect to y
for fixed x , we get

f ⋆ ≤ f (x)− 1
2(L1−µ2)

∥g1 − g2∥2.
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Since the DC optimization problem (8.1) may have a non-convex and non-
smooth objective function f , we will also need a more general notion of subgra-
dients than in the convex case which is defined in Section 2.1.6.

Definition 8.5. Let f1, f2 be closed proper convex functions, and let f be lower
semi-continuous.

• The point x̄ ∈ dom( f ) is called a critical point of problem (8.1) if

∂ f1( x̄)∩ ∂ f2( x̄) ̸= ;. (8.5)

• The point x̄ ∈ dom( f ) is called a stationary point of problem (8.1) if

0 ∈ ∂L f ( x̄), (8.6)

where ∂L stands for general subdifferential, see Section 2.1.6.

Obviously, the stationarity condition is stronger than criticality. We recall that
a convex function will be locally Lipschitz around x̄ providing it takes finite values
in a neighborhood of x̄; see Theorem 35.1 in [Roc97]. Consequently, if f1 or f2
takes finite values around a neighborhood of a stationary point x̄ , then x̄ is a
critical point; see Corollary 10.9 in [RW09]. However, its converse does not hold
in general. For instance, consider f : R→ R given as f (x) = x . The function f
may be written as f = f1 − f2 where f1(x) =max(x , 0) and f2(x) =max(−x , 0).
Suppose that x̄ = 0. It is readily seen that ∂ f1( x̄) ∩ ∂ f2( x̄) ̸= ;, but x̄ = 0 is
not a stationary point of f . It is worth noting that, if f2 is strictly differentiable
at x̄ , these definitions are equivalent; see Example 10.10 in [RW09]. Recall that
function f is strictly differentiable at x̄ , if

lim
(x ,x′)→( x̄ , x̄)

x ̸=x′

f (x)− f (x ′)− 〈∇ f ( x̄), x − x ′〉
∥x − x ′∥

= 0.

We refer the interested reader to [AT05, JBK+18, PRA17] and references therein
for more discussions on optimality conditions for DC problems.

8.2.1 The DC problem

In this section, we consider

min f (x) = f1(x)− f2(x) (8.7)

s.t. x ∈ Rn,
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where f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn). Here, we assume that L1, L2 ∈ (0,∞]
and µ1,µ2 ∈ [0,∞), and consequently f may be non-differentiable. We may
assume without loss of generality that f1 and f2 satisfy the following assumptions:

L1 > µ2, L2 > µ1. (8.8)

Indeed, if L1 ≤ µ2, then for x , y ∈ Rn and λ ∈ [0,1], we have

λ f1(x) + (1−λ) f1(y)≤ f1(λx + (1−λ)y) +λ(1−λ) L1
2 ∥x − y∥2

−λ f2(x)− (1−λ) f2(y)≤ − f2(λx + (1−λ)y)−λ(1−λ)µ2
2 ∥x − y∥2;

see Theorem 2.15 and Theorem 2.19 in [Nes18]. By summing the above inequal-
ities, we obtain

λ f (x) + (1−λ) f (y)≤ f (λx + (1−λ)y) +λ(1−λ) L1−µ2
2 ∥x − y∥2,

which implies concavity of f onRn. In this case, problem (8.7) will be unbounded
from below. This follows from the fact that a concave function onRn is unbounded
from below unless it is constant. Likewise, one can show that problem (8.7) will
be convex providing L2 ≤ µ1.

The Toland dual [Tol79] of problem (8.7) may be written as

min f ∗2 (x)− f ∗1 (x) (8.9)

s.t. x ∈ Rn.

It is known that problems (8.7) and (8.9) share the same optimal value [Tol79].
In what follows, we investigate the convergence rate of Algorithm 8.1 with

the termination criterion ∥gk
1 − gk

2∥ ≤ ε. As a motivation of this criterion, recall
that ∥gk

1 − gk
2∥ = 0 implies that xk is a critical point of (8.1) in the non-smooth

case, and a stationary point of f if f2 is differentiable; see our discussion following
Definition 8.5. In Section 8.3 we will derive results for the case that at least one
of f1 or f2 is differentiable, and we will consider the more general situation in
Section 8.4.

For well-definedness of the DCA (Algorithm 8.1), throughout the chapter, we
assume that

xk ∈ dom(∂ f1)∩ dom(∂ f2) k = 0,1, . . . ,

where dom(∂ f1) = {x : ∂ f1(x) ̸= ;}. It is worth noting that similar algorithm
has been developed for the dual problem in [LTPD18], and (8.2) is equivalent to
xk+1 ∈ ∂ f ∗1 (g

k
2).
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8.2.2 One iteration of DCA on an example

Consider the following unconstrained optimization problem (see Figure 8.1).

min
x∈R

f (x) := 1
4 x4 − 2

3 x3 − 1
2 x2 + 2x , x0 = 3. (8.10)

x

f (x)

x0

Figure 8.1: Illustration of the function (8.10)

It is easily seen that the problem can be written in the following form.

f (x) =
�1

4 x4 − 2
3 x3 + 2x2

�

︸ ︷︷ ︸

f1

−
�1

2 x2 − 2x + 2x2
�

︸ ︷︷ ︸

f2

, (8.11)

where f1 and f2 are convex functions (see Figure 8.2).

x

f1(x)

x

f2(x)

Figure 8.2: Illustration of the functions f1 and f2 of problem (8.11)
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By taking x0 = 3 as the starting point of the algorithm, the following subprob-
lem of the algorithm should be solved (see Figure 8.3).

min
x∈R

u(x) :=
�1

4 x4 − 2
3 x3 + 2x2

�

︸ ︷︷ ︸

f1

− (16.5+ 13(x − 3))
︸ ︷︷ ︸

f2(x0)+ f ′2(x
0)(x−x0)

(8.12)

x

f2(x)

x0
x

x0x1

u(x)

f (x)

Figure 8.3: Illustration of the subproblem (8.12)

By solving subproblem (8.12), DCA generates x1 = 2.5 which is illustrated in
Figure 8.4.

x

f (x)

x0x1x̄

Figure 8.4: Illustration of the first iteration of the Algorithm 8.1 on the function
(8.10)

For this example, in the next iteration DCA generates x2 ≈ 2.2728, x3 ≈
2.1576 and so on that converges to the local minimizer at x̄ = 2.
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8.3 Performance analysis of the DCA for smooth f1 or f2

In this subsection, we apply performance estimation for the analysis of Algorithm
8.1 for the case that at least one of f1 or f2 is L-smooth for some finite L > 0.
The worst-case convergence rate of Algorithm 8.1 can be obtained by solving the
following abstract optimization problem:

max
�

min
0≤k≤N



gk
1 − gk

2





2
�

gN
1 , gN

2 , xN , . . . , x1 are generated by Algorithm 8.1 w.r.t. f1, f2, x0

f (x)≥ f ⋆ ∀x ∈ Rn (8.13)

f1 ∈ Fµ1,L1
(Rn), f2 ∈ Fµ2,L2

(Rn)

f1(x
0)− f2(x

0)− f ⋆ ≤∆

x0 ∈ Rn,

where ∆≥ 0 denote the difference between the optimal value and the value of f
at the starting point. Here, f1, f2 and xk, gk

1 and gk
2 (k ∈ {0, ..., N}) are decision

variables, and ∆,µ1, L1,µ2, L2 and N are fixed parameters.
Problem (8.13) is an intractable infinite-dimensional optimization problem with

an infinite number of constraints. In what follows, we provide a semidefinite pro-
gramming relaxation of the problem.

By Theorem 2.37, problem (8.13) can be written as,

max
�

min
0≤k≤N



gk
1 − gk

2





2
�

s. t. 1

2(1−
µ1
L1
)

�

1
L1





g i
1 − g j

1







2
+µ1



x i − x j




2 − 2µ1
L1

¬

g j
1 − g i

1, x j − x i
¶

�

≤

f i
1 − f j

1 −
¬

g j
1, x i − x j

¶

i, j ∈ {0, . . . , N}

1

2(1−
µ2
L2
)

�

1
L2





g i
2 − g j

2







2
+µ2



x i − x j




2 − 2µ2
L2

¬

g j
2 − g i

2, x j − x i
¶

�

≤

f i
2 − f j

2 −
¬

g j
2, x i − x j

¶

i, j ∈ {0, . . . , N} (8.14)

gk+1
1 = gk

2 k ∈ {0, . . . , N − 1}

f k
1 − f k

2 −
1

2(L1 −µ2)
∥gk

1 − gk
2∥

2 ≥ f ⋆ k ∈ {0, . . . , N}

f 0
1 − f 0

2 − f ⋆ ≤∆.

In problem (8.14), f ⋆ and xk, gk
1 , gk

2 , f k
1 , f k

2 , k ∈ {0, . . . , N}, are deci-
sion variables. By virtue of Lemma 8.4, constraints f (x) ≥ f ⋆ for each x ∈ Rn
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is replaced by f k
1 − f k

2 −
1

2(L1−µ2)
∥gk

1 − gk
2∥

2 ≥ f ⋆, k ∈ {0, . . . , N}. Due to

the necessary and sufficient optimality conditions for convex problems, xk+1 ∈
argminx∈Rn f1(x)− f2(xk)−〈gk

2 , x − xk〉, k ∈ {0, . . . , N − 1} implies gk+1
1 = gk

2 for
some gk+1

1 ∈ ∂ f (xk+1); see Theorem 3.63 in [Bec17]. By substituting gk
2 = gk+1

1 ,
k ∈ {0, . . . , N − 1}, the above formulation may be written as:

max ℓ

s. t.


g i
1 − g i+1

1





2 ≥ ℓ i ∈ {0, . . . , N − 1}


gN
1 − gN

2





2 ≥ ℓ

1

2(1−
µ1
L1
)

�

1
L1





g i
1 − g j

1







2
+µ1



x i − x j




2 − 2µ1
L1

¬

g j
1 − g i

1, x j − x i
¶

�

≤

f i
1 − f j

1 −
¬

g j
1, x i − x j

¶

i, j ∈ {0, . . . , N}

1

2(1−
µ2
L2
)

�

1
L2





g i+1
1 − g j+1

1







2
+µ2



x i − x j




2 − 2µ2
L2

¬

g j+1
1 − g i+1

1 , x j − x i
¶

�

≤

f i
2 − f j

2 −
¬

g j+1
1 , x i − x j

¶

i, j ∈ {0, . . . , N − 1} (8.15)

1

2(1−
µ2
L2
)

�

1
L2





gN
2 − g j+1

1







2
+µ2



xN − x j




2 − 2µ2
L2

¬

g j+1
1 − gN

2 , x j − xN
¶

�

≤ f N
2 − f j

2 −
¬

g j+1
1 , xN − x j

¶

j ∈ {0, . . . , N − 1}
1

2(1−
µ2
L2
)

�

1
L2



g i+1
1 − gN

2





2
+µ2



x i − xN




2 − 2µ2
L2




gN
2 − g i+1

1 , xN − x i
�

�

≤ f i
2 − f N

2 −



gN
2 , x i − xN

�

i ∈ {0, . . . , N − 1}

f k
1 − f k

2 −
1

2(L1 −µ2)
∥gk

1 − gk+1
1 ∥

2 ≥ f ⋆ k ∈ {0, . . . , N − 1}

f N
1 − f N

2 −
1

2(L1 −µ2)
∥gN

1 − gN
2 ∥

2 ≥ f ⋆

f 0
1 − f 0

2 − f ⋆ ≤∆.

By using this formulation, the next result (Theorem 8.6) provides a convergence
rate for Algorithm 8.1. Since the proof is quite technical, a few remarks are in
order. The proof uses the performance estimation technique of Drori and Teboulle
[DT14], that consists of the following steps:

1. Observe that problem (8.15) may be rewritten as a semidefinite program-
ming (SDP) problem (for sufficiently large N) by replacing all inner prod-
ucts by the entries of an unknown Gram matrix.

2. Use weak duality of SDP to bound the optimal value of (8.15) by construct-
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ing a dual feasible solution.

3. The dual feasible solution is constructed empirically, by first doing numeri-
cal experiments with fixed values of the parameters∆, N ,µ1, L1,µ2, L2, and
noting the dual multipliers.

4. Subsequently, the analytical expressions of the dual multipliers are guessed,
based on the numerical values, and the guess is verified analytically.

5. In the proof of Theorem 8.6, the conjectured dual multipliers are simply
stated, and then shown to provide the required bound on the optimal value
of (8.15) through the corresponding aggregation of the constraints of (8.15).

Theorem 8.6. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn) and let f (x0) − f ⋆ = ∆.
Suppose that L1 or L2 is finite. Then after N iterations of Algorithm 8.1, one has:

min
0≤k≤N



gk
1 − gk

2



≤

√

√ A∆
BN + C

, (8.16)

where

A= 2
�

L1 L2 −µ1 L2 IR+(L1 − L2)−µ2 L1 IR+(L2 − L1)
�

,

B = L1 + L2 +µ1

�

L1
L2
− 3

�

IR+ (L1 − L2) +µ2

�

L2
L1
− 3

�

IR+ (L2 − L1) ,

and

C =
L1 L2 −µ1 L2 IR+ (L1 − L2)−µ2 L1 IR+ (L2 − L1)

L1 −µ2
,

where IR+ stands for indicator function defined by (8.4).

Proof. We investigate two cases L1 ≥ L2 and L1 < L2. Suppose that U denotes the
square of the right-side of inequality (8.16) and let B = U

∆ . To prove this bound,
we show that U is an upper bound for problem (8.15). First, we consider L1 ≥ L2.
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Let

λ̄=
2 (L1 L2 −µ1(2L2 − L1))

N
�

L1 + L2 +µ1

�

L1
L2
− 3

��

+ L2(L1−µ1)
L1−µ2

η̄1 =
L2 −µ1

�

L1 + L2 +µ1(
L1
L2
− 3)

�

N + L2(L1−µ1)
L1−µ2

η̄k =
L1µ1

L2
+ (L1 + L2 − 3µ1)

�

L1 + L2 +µ1(
L1
L2
− 3)

�

N + L2(L1−µ1)
L1−µ2

, k ∈ {2, . . . , N}

η̄N+1 = 1− η̄1 −
N
∑

k=2

η̄k =
L1µ1

L2
+ L1 − 2µ1 +

L2(L1−µ1)
L1−µ2

�

L1 + L2 +µ1(
L1
L2
− 3)

�

N + L2(L1−µ1)
L1−µ2

.

By direct calculation, one can verify that

ℓ− U + η̄1

�


g0
1 − g1

1





2 − ℓ
�

+
N
∑

k=2

η̄k

�


gk−1
1 − gk

1





2 − ℓ
�

+ η̄N+1

�


gN
1 − gN

2





2 − ℓ
�

+ B
�

f ⋆ − f 0
1 + f 0

2 +∆
�

+ B
�

f N
1 − f N

2 −
1

2(L1 −µ2)
∥gN

1 − gN
2 ∥

2 − f ⋆
�

+

B
N
∑

k=1

�

f k−1
1 − f k

1 −



gk
1 , xk−1 − xk

�

− 1

2(1−
µ1
L1
)

�

1
L1



gk−1
1 − gk

1





2
+µ1



xk−1 − xk




2−

2µ1
L1




gk
1 − gk−1

1 , xk − xk−1
�

��

+ λ̄
N−1
∑

k=1

�

f k
2 − f k−1

2 −



gk
1 , xk − xk−1

�

−

1

2(1−
µ2
L2
)

�

1
L2



gk
1 − gk+1

1





2
+µ2



xk−1 − xk




2 − 2µ2
L2
〈gk+1

1 − gk
1 , xk − xk−1〉

�

�

+ (λ̄− B)
N−1
∑

k=1

�

f k−1
2 − f k

2 −



gk+1
1 , xk−1 − xk

�

− 1

2(1−
µ2
L2
)
( 1

L2



gk
1 − gk+1

1





2
+

µ2



xk−1 − xk




2 − 2µ2
L2
〈gk+1

1 − gk
1 , xk − xk−1〉

�

+ (λ̄− B)

�

f N−1
2 − f N

2 −



gN
2 , xN−1 − xN

�

− 1

2(1−
µ2
L2
)

�

1
L2



gN
1 − gN

2





2
+µ2



xN−1 − xN




2 − 2µ2
L2
〈gN

2 − gN
1 , xN − xN−1〉

�

�

+ λ̄

�

f N
2 − f N−1

2 −



gN
1 , xN − xN−1

�

− 1

2(1−
µ2
L2
)

�

1
L2



gN
1 − gN

2





2
+µ2



xN−1 − xN




2

− 2µ2
L2
〈gN

2 − gN
1 , xN − xN−1〉

��

=

− β̄−1
1

N
∑

i=1



β̄1 g i−1
1 − β̄1 g i

1 − ᾱ1 x i−1 + ᾱ1 x i




2 − ᾱ−1
2

N−1
∑

i=1



ᾱ2 x i−1 − ᾱ2 x i − β̄2 g i
1 + β̄2 g i+1

1





2

− ᾱ−1
2



ᾱ2 xN−1 − ᾱ2 xN − β̄2 gN
1 + β̄2 gN

2





2 ≤ 0,
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where

ᾱ1 =
µ1B

2(L1 −µ1)
, β̄1 =

µ1B
2L2(L1 −µ1)

,

ᾱ2 =
(−µ1 L2

2 − 2µ1µ2 L2 +µ1 L1 L2 +µ1µ2 L1 +µ2 L1 L2)B

2(L1 −µ1)(L2 −µ2)
,

β̄2 =
(L1 L2µ2 − 2µ1µ2 L2 +µ1µ2 L1 −µ1 L2

2 +µ1 L1 L2)B

2L2(L1 −µ1)(L2 −µ2)
.

It is readily seen that λ̄, η̄k (k ∈ {1, . . . , N + 1}), λ̄− B, β̄1, ᾱ2 ≥ 0. Thus we have
ℓ ≤ U for any feasible point of problem (8.15). Now, we consider L1 < L2. In
this case, because bound (8.16) does not depend on µ1, we may assume µ1 = 0
in problem (8.15). Let

λ̂=
2 (L1 L2 −µ2(2L1 − L2))

�

L1 + L2 +µ2

�

L2
L1
− 3

��

N + L1(L2−µ2)
L1−µ2

η̂1 =
L2(L1+µ2)

L1
− 2µ2

�

L1 + L2 +µ2(
L2
L1
− 3)

�

N + L1(L2−µ2)
L1−µ2

η̂k =
L2(L1+µ2)

L1
+ (L1 − 3µ2)

�

L1 + L2 +µ2(
L2
L1
− 3)

�

N + L1(L2−µ2)
L1−µ2

, k ∈ {2, . . . , N}

η̂N+1 = 1− η̂1 −
N
∑

k=2

η̂k =
L1(L2−µ2)

L1−µ2
+ L1 −µ2

�

L1 + L2 +µ2(
L2
L1
− 3)

�

N + L1(L2−µ2)
L1−µ2

.
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With some calculation, one can establish that

ℓ− U + η̂1

�


g0
1 − g1

1





2 − ℓ
�

+
N
∑

k=2

η̂k

�


gk−1
1 − gk

1





2 − ℓ
�

+ η̂N+1

�


gN
1 − gN

2





2 − ℓ
�

+ B
�

f ⋆ − f 0
1 + f 0

2 +∆
�

+ B
�

f N
1 − f N

2 −
1

2(L1 −µ2)
∥gN

1 − gN
2 ∥

2 − f ⋆
�

+ (λ̂− B)
N
∑

k=1

�

f k
1 − f k−1

1 −



gk−1
1 , xk − xk−1

�

− 1
2L1



gk
1 − gk−1

1





2�

+ λ̂
N
∑

k=1

�

f k−1
1 − f k

1 −



gk
1 , xk−1 − xk

�

− 1
2L1



gk−1
1 − gk

1





2�

+ B
N−1
∑

k=1

�

f k
2 − f k−1

2 −



gk
1 , xk − xk−1

�

−

1

2(1−
µ2
L2
)

�

1
L2



gk
1 − gk+1

1





2
+µ2



xk−1 − xk




2 − 2µ2
L2




gk+1
1 − gk

1 , xk − xk−1
�

�

�

+ B

�

f N
2 − f N−1

2 −



gN
1 , xN − xN−1

�

−

1

2(1−
µ2
L2
)

�

1
L2



gN
1 − gN

2





2
+µ2



xN−1 − xN




2 − 2µ2
L2




gN
2 − gN

1 , xN − xN−1
�

�

�

= −β̂−1
1

N
∑

i=1



β̂1 g i−1
1 − β̂1 g i

1 − α̂1 x i−1
1 + α̂1 x i





2
− α̂−1

2

N−1
∑

i=1



α̂2 x i−1 − α̂2 x i − β̂2 g i
1 + β̂2 g i+1

1





2

− α̂−1
2



α̂2 xN−1 − α̂2 xN − β̂2 gN
1 + β̂2 gN

2





2
≤ 0,

where

α̂1 =
µ2B(1−

L1
L2
)

2L1(1−
µ2
L2
)
, α̂2 =

µ2 L1B
2(L2−µ2)

, β̂1 =
µ2B(1−

L1
L2
)

2L2
1(1−

µ2
L2
)
, β̂2 =

µ2B
2(L2−µ2)

.

It is readily seen that λ̂, η̂k (k ∈ {1, . . . , N+1}), λ̂−B, β̂1, α̂2 ≥ 0. The rest of proof
is similar to that of the former case, and the proof is complete.

The theorem implies that Algorithm 8.1 is convergent when at least one of the
Lipschitz constants is finite. In the following corollary, we simplify the inequality
(8.16) for some special cases of L1, L2, µ1, and µ2.

Corollary 8.7. Suppose that f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn). Then, after N
iterations of Algorithm 8.1, one has:

i) If L1 =∞, L2 <∞, then

min
0≤k≤N



gk
1 − gk

2



≤

√

√

√2L2
2 ( f (x0)− f ⋆)

N(L2 +µ1)
.
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ii) If L2 =∞, L1 <∞, then

min
0≤k≤N



gk
1 − gk

2



≤

√

√

√

2L2
1 (L1 −µ2) ( f (x0)− f ⋆)
�

L2
1 −µ

2
2

�

N + L2
1

. (8.17)

iii) If L1, L2 <∞, and µ1 = µ2 = 0 then

min
0≤k≤N



gk
1 − gk

2



≤

√

√

√2L1 L2 ( f (x0)− f ⋆)
(L1 + L2)N + L2

.

One can compare the results in Corollary 8.7 to that of Le Thi et al. [LTPD21]
as reviewed earlier in Theorem 8.2. First of all, Corollary 8.7 part iii) does not
assume strict convexity of f1 or f2, and in this sense it is more general than the
result in Theorem 8.2. If we do assume µ1+µ2 > 0, then, for example, if L1 <∞,
Theorem 8.2 implies,

min
0≤k≤N



gk
1 − gk

2



≤ L1

√

√2 ( f (x0)− f ⋆)
(µ1 +µ2)N

,

which is weaker than our bound (8.17) since µ1 ≤ L1, although the O(1/
p

N)
dependence on N is the same. We will do a further, more direct, comparison of
Theorem 8.2 and Corollary 8.7 in Section 8.3.2, where we consider the conver-
gence rate of the sequence ∥xk+1 − xk∥.

8.3.1 An example to prove tightness

In what follows, we give a class of functions for which the bound in Corollary 8.7,
part ii), is attained, implying that the O(1/

p
N) convergence rate is tight. This

result is new to the best of our knowledge.

Example 8.8. Let L1 ∈ (0,∞). Suppose that N is selected such that U :=
Ç

2
L1(N+1) <

1. Let f1 : R→ R be given as follows,

f1(x) =











L1
2 (x − i(1− U))2 + L1Ui(i−1)(1−U)

2 x ∈ [αi ,βi+1)

L1Uβi(x − βi) +
βi L1U2

2 + βi(βi−1)L1U
2 x ∈ [βi ,αi)

L1
2 x2 x ∈ (−∞, 0) ,

where, for i ∈ {1, . . . , N + 1}, αi = i − U, βi = i − 1, and βN+2 =∞. Note that
f1 ∈ F0,L1

(R). Suppose that f2 : R→ R is given by

f2(x) = max
1≤i≤N+1

¦

L1U(i − 1)(x − i) + i(i−1)L1U
2

©

.
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An easy computation shows that
(

∂ f2(i) = [L1U(i − 1), L1Ui] i ∈ {1, . . . , N , }

∂ f2(N + 1) = L1UN .

Note that f2 ∈ F0,∞(R). One can check that, at x0 = N + 1, one has f1(x0) −
f2(x0) = 1, minx∈R f1(x)− f2(x) = 0 and argminx∈R f1(x)− f2(x) = [0,1− U].
By taking x0 as a starting point, Algorithm 8.1 can generate the following iterates:

xk = N + 1− k, k ∈ {0, . . . , N}.

Here at iteration, k ∈ {0, . . . , N}, we set gk
2 = L1U(N−k). It follows that |∇ f1(xk)−

gk
2 |=

Ç

2L1
N+1 , k ∈ {0, . . . , N}. Hence,

min
0≤k≤N



gk
1 − gk

2



=
Ç

2L1
N+1 ,

which shows bound (8.17) in Corollary 8.7 is exact for this example.

8.3.2 Convergence rates for the iterates

In this section we investigate the implications of our results so far on convergence
rates of the iterates {xk}.

Proposition 8.9. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn) and let f (x0)− f ⋆ ≤∆.
If µ1 or µ2 is strictly positive, then after N iterations of Algorithm 8.1, one has:

min
0≤k≤N−1



xk+1 − xk


≤
�

A
BN + C

·∆
�

1
2

,

where

A= 2
�

µ−1
2 µ
−1
1 − L−1

2 µ
−1
1 IR+(µ

−1
2 −µ

−1
1 )− L−1

1 µ
−1
2 IR+(µ

−1
1 −µ

−1
2 )
�

,

B = µ−1
2 +µ

−1
1 + L−1

2

�

µ1
µ2
− 3

�

IR+
�

µ−1
2 −µ

−1
1

�

+ L−1
1

�

µ2
µ1
− 3

�

IR+
�

µ−1
1 −µ

−1
2

�

,

and

C =
µ−1

2 µ
−1
1 − L−1

2 µ
−1
1 IR+

�

µ−1
2 −µ

−1
1

�

− L−1
1 µ
−1
2 IR+

�

µ−1
1 −µ

−1
2

�

µ−1
2 − L−1

1

.

Proof. The proof is based on the computation of the worst case convergence rate
of DCA for problem (8.9) by applying Theorem 8.6. By Toland duality, f ⋆ is also
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a lower bound of problem (8.9). By virtue of conjugate function properties, it fol-
lows that f ∗2 (g

0
2)− f ∗1 (g

0
2)− f ⋆ ≤∆ and f ∗2 ∈ FL−1

2 ,µ−1
2
(Rn) and f ∗1 ∈ FL−1

1 ,µ−1
1
(Rn).

In addition, xk+1 ∈ ∂ f ∗1 (g
k
2) and xk ∈ ∂ f ∗2 (g

k
2) for k ∈ {0, . . . , N − 1}. Hence,

all assumptions of Theorem 8.6 hold, and subsequently the bound follows from
Theorem 8.6.

Recall the known result from Theorem 8.2:

min
0≤k≤N−1



xk+1 − xk


≤
�

2( f (x0)− f ⋆)
N(µ1 +µ2)

�

1
2

. (8.18)

By employing Theorem 8.9, we get

min
0≤k≤N−1



xk+1 − xk


≤
�

2( f (x0)− f ⋆)
N(µ1 +µ2) +µ1

�

1
2

,

which is tighter than the bound (8.18). Moreover, the bound given in Proposition
8.9 provides more information concerning the worst-case convergence rate of the
DCA when L1 <∞ or L2 <∞.

8.3.3 The gradient descent method

In this section, we study the relationship between the gradient descent method
and DCA given by Algorithm 4.1 and 8.1, respectively. Using the convergence rate
provided by Theorem 8.6 we derive the same convergence rate for the gradient
descent given by Theorem 4.3 when the step length tk = t lies in (0, 1

L ].
Consider the following optimization problem

inf
x∈Rn

f (x)

where f is lower-bounded by f ⋆ and is an L-smooth function on Rn with L <∞,
that is f ∈ F−L,L(Rn). It is easily seen that the function f can be written as

f (x) :=
1
2t
∥x∥2 −

�

1
2t
∥x∥2 − f (x)

�

,

where t is in (0, 1
L ]. We define f1 := 1

2t ∥x∥
2 and f2 := 1

2t ∥x∥
2 − f (x). Both

functions f1 and f2 are convex since t is in (0, 1
L ]. If we solve the subproblem of

the DCA at iteration k given by

xk+1 = argminx
1
2t
∥x∥2 −

�

1
2t



xk




2 − f (xk)
�

−


1
t

xk −∇ f (xk), x − xk
·

,
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we get

xk+1 = xk − t∇ f (xk),

which is exactly the steps of the gradient descent method; see Algorithm 4.1.
Note that f1 and f2 are 1

t -smooth 1
t -strongly convex and

�1
t + L

�

-smooth
�1

t − L
�

-
strongly convex functions, respectively. Using the Theorem 8.6, one can derive
the following convergence rate for the gradient descent method.

Proposition 8.10. Suppose that f (x) is an L-smooth function. If N iterations of
the gradient descent method runs with t ∈ (0, 1

L ], then

min
0≤k≤N



gk


≤

√

√

√
4 ( f (x0)− f ⋆)

(4t − Lt2)N + 2
L

.

As the given bound with Proposition 8.10 matches the bound given by Theo-
rem 4.3 when tk = t ∈ (0, 1

L ], the given bound by Theorem 8.6 is tight for some
cases.

8.3.4 Proximal gradient method

As a by-product of our analysis, we conclude the section by giving a convergence
rate for the proximal gradient method (known as forward-backward algorithm)
with constant step length for non-convex problems. Consider the non-convex
optimization problem,

inf φ(x) := g(x) + h(x) (8.19)

s.t. x ∈ Rn,

where g is an L-smooth function on Rn and h ∈ F0,∞(Rn). Algorithm 8.2 below
describes the proximal gradient method with constant step.

Remark that Algorithm 8.2 reduces to the gradient method when h = 0. To
the best knowledge of the authors, the proximal gradient method for non-convex
problems, first is developed in [FM81].

We use the first-order optimality condition for computing the convergence
rate. Note that x̄ satisfies the first order optimality condition with accuracy ε≥ 0
if

min
ξ∈∂Lφ( x̄)

∥ξ∥ ≤ ε. (8.21)
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Algorithm 8.2 Proximal gradient method with constant step length

Pick x0 ∈ Rn and the step length t > 0.
For k = 0, 1, . . . perform the following steps:

1. Compute the proximal operator of th at xk − t∇g(xk), that is,

xk+1 = argminx∈Rn th(x) + 1
2



x − xk + t∇g(xk)




2
. (8.20)

2. If the termination criterion is satisfied, then stop.

It is worth noting that (8.21) implies that

φ′( x̄; d)≥ −ε, ∥d∥= 1,

where φ′( x̄; d) denotes the directional derivative of φ at x̄ in the direction of d;
see [Nes13].

Suppose that t ≤ 1
L and the sequence {xk} is generated by Algorithm 8.2.

We define f1 = h + 1
2t ∥.∥

2 and f2 =
1
2t ∥.∥

2 − g. Clearly, f1 ∈ F 1
t ,∞(R

n) and
f2 ∈ F 1

t −L, 1
t +L(R

n). Consider the functions f1 and f2 as just defined above. The
subproblem (8.2) is

xk+1 = argminx∈Rn h(x) +
1
2t
∥x∥2 −

1
2t
∥xk∥2 + g(xk)− 〈

1
t

xk −∇g(xk), x − xk〉.

The optimality conditions imply

xk+1 = xk − t
�

∇h(xk+1 +∇g(xk)
�

.

The last expression is the same as xk+1 generated by considering optimality con-
ditions of subproblem (8.20). This shows that Algorithm 8.2 and Algorithm 8.1
share the same sequence {xk}. Hence, one can obtain the following convergence
rate by using Corollary 8.7.

Proposition 8.11. Let g be a L-smooth function on Rn and h ∈ F0,∞(Rn) and let
−∞ < φ⋆ = minx∈Rn φ(x). If t ≤ 1

L , then after N iterations of Algorithm 8.2, we
have

min
0≤k≤N

�

min
ξ∈∂Lφ(xk)

∥ξ∥
�

≤

√

√

√
2(L + 1

t )2 (φ(x1)−φ⋆)

(L + 2
t )N

.
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If h = 0, in the same line by using Theorem 8.6, one can infer the following
convergence rate for the gradient descent method with fixed step length 1

L ,

min
0≤k≤N

∥∇φ(xk)∥ ≤
r

4L(φ(x0)−φ⋆)
4N+3 ,

which is established by authors recently; see [AdKZ22, Theorem 2] and Theorem
4.3.

8.4 Performance estimation using a convergence crite-
rion for critical points in the nonsmooth case

Theorem 8.6 addresses the case that f1 or f2 is L-smooth with L <∞. In what
follows, we investigate the case that f1 and f2 are proper convex functions and
where both may be non-smooth. For this general case, we need to adopt a different
termination criterion to obtain results, since the termination criterion ∥gk

1− gk
2∥ ≤

ε may be of no use in this case. For example, suppose that a DC function f : R→
R∪ {∞} is given by

f (x) =

(

f1(x)− f2(x) x ≥ 0

∞ x < 0,

where

f1(x) = max
n∈N∪{0}

{−n(x − 2−n) + 2− 21−n − n2−n},

f2(x) = max
n∈N∪{0}

{−(n+ 1)(x − 2−n) + 2− 3(2−n)− n2−n}.

With x0 = 1 and the given DC decomposition, Algorithm 8.1 may generate

xk = 2−k, gk
1 = −(k− 1), gk

2 = −k, k ∈ {1,2, ...}.

As |gk
1 − gk

2 | = 1, Algorithm 8.1 never stops by employing the given termination
criterion while it is convergent to global minimum x̄ = 0. We therefore will use
the termination criterion of the following value being sufficiently small:

T (xk+1) := f1(x
k)− f2(x

k)− min
x∈Rn

�

f1(x)− f2(x
k)−




gk
2 , x − xk

��

= f1(x
k)− f1(x

k+1)−



gk
2 , xk − xk+1

�

. (8.22)
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Note that T (xk+1) ≥ 0. It follows that if T (xk+1) = 0 then f (xk) = f (xk+1),
and xk ∈ argminx∈Rn f1(x) − f2(xk) − 〈gk

2 , x − xk〉. Indeed, by the optimality
conditions for convex problems, we have ∂ f1(xk) ∩ ∂ f2(xk) ̸= ;. Consequently,
T (xk+1) = 0 implies that xk is a critical point of problem (8.7). The aforemen-
tioned stopping criterion has also been employed for the analysis of the Frank-
Wolfe method for nonconvex problems; see equation (2.6) in [Gha19].

In what follows, we investigate Algorithm 8.1 with the termination criterion
T (xk+1) < ε for the given accuracy ε > 0. The performance estimation problem
with termination criterion (8.22) may be written as follows,

max ℓ

s. t. f1(x
k)− f1(x

k+1)−



gk+1
1 , xk − xk+1

�

≥ ℓ i ∈ {0, . . . , N − 1}

1

2(1−
µ1
L1
)

�

1
L1





g i
1 − g j

1







2
+µ1



x i − x j




2 − 2µ1
L1

¬

g j
1 − g i

1, x j − x i
¶

�

≤ f i
1 − f j

1 −
¬

g j
1, x i − x j

¶

i, j ∈ {0, . . . , N}

1

2(1−
µ2
L2
)

�

1
L2





g i+1
1 − g j+1

1







2
+µ2



x i − x j




2 − 2µ2
L2

¬

g j+1
1 − g i+1

1 , x j − x i
¶

�

≤ f i
2 − f j

2 −
¬

g j+1
1 , x i − x j

¶

i, j ∈ {0, . . . , N − 1} (8.23)

1

2(1−
µ2
L2
)

�

1
L2





gN
2 − g j+1

1







2
+µ2



xN − x j




2 − 2µ2
L2

¬

g j+1
1 − gN

2 , x j − xN
¶

�

≤ f N
2 − f j

2 −
¬

g j+1
1 , xN − x j

¶

j ∈ {0, . . . , N − 1}

1

2(1−
µ2
L2
)

�

1
L2



g i+1
1 − gN

2





2
+µ2



x i − xN




2 − 2µ2
L2




gN
2 − g i+1

1 , xN − x i
�

�

≤ f i
2 − f N

2 −



gN
2 , x i − x j

�

i ∈ {0, . . . , N − 1}

f k
1 − f k

2 ≥ f ⋆ k ∈ {0, . . . , N}

f 0
1 − f 0

2 − f ⋆ ≤∆.

Note that we do not employ Lemma 8.4 in this formulation because we con-
sider a general DC problem. Using the performance estimation procedure as de-
scribed before the proof of Theorem 8.6 once more, we obtain the following result.

Theorem 8.12. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn). Then, after N iterations
of Algorithm 8.1, one has

min
0≤k≤N−1

f1(x
k)− f1(x

k+1)− 〈gk
2 , xk − xk+1〉 ≤ (8.24)

min
§

L1

N(L1 +µ2)
,

L2

N(L2 +µ1)−µ1

ª

�

f (x0)− f ⋆
�

.
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Proof. We show separately that L1( f (x0)− f ⋆)
N(L1+µ2)

and L2( f (x0)− f ⋆)
N(L2+µ1)−µ1

are upper bounds for
problem (8.23). The proof is analogous to that of Theorem 8.6. First, consider

the bound L1( f (x0)− f ⋆)
N(L1+µ2)

. Since the given bound does not depend on µ1 and L2, we
may assume without loss of generality that L2 =∞ and µ1 = 0. Suppose that
B1 =

L1
N(L1+µ2)

. With some algebra, one can show that

ℓ− B1∆+
1
N

N
∑

k=1

�

f k−1
1 − f k

1 − 〈g
k
1 , xk−1 − xk〉 − ℓ

�

+ B1
�

f N
1 − f N

2 − f ⋆
�

+

B1
�

f ⋆ − f 0
1 + f 0

2 +∆
�

+ ( 1
N − B1)

N
∑

k=1

�

f k
1 − f k−1

1 −



gk−1
1 , xk − xk−1

�

− 1
2L1



gk
1 − gk−1

1





2�

+ B1

N
∑

k=1

�

f k
2 − f k−1

2 −



gk
1 , xk − xk−1

�

− µ2
2



xk − xk−1




2�

= − B1µ2
2

N
∑

k=1





xk−1 − xk − 1
L1
(gk−1

1 − gk
1 )






2
≤ 0.

The rest of proof is similar to that of Theorem 8.6. Now, we consider the

bound L2( f (x0)− f ⋆)
N(L2+µ1)−µ1

. Without loss generality, we may assume that L1 =∞ and
µ2 = 0. By doing some calculus, one can show that

ℓ− B2∆+ B2

�

f 0
1 − f 1

1 −



g1
1 , x0 − x1

�

− ℓ
�

+ B2

�

f N
1 − f N

2 − f ⋆
�

+ B2

�

f ⋆ − f 0
1 + f 0

2 +∆
�

+ 1−B2
N−1

N
∑

k=2

�

f k−1
1 − f k

1 −



gk
1 , x k−1 − x k

�

− ℓ
�

+α
N
∑

k=2

�

f k
1 − f k−1

1 −



gk−1
1 , x k − x k−1

�

− µ1
2



x k − x k−1




2�

+ B2

N
∑

k=1

�

f k
2 − f k−1

2 −



gk
1 , x k − x k−1

�

− 1
2L2



gk+1
1 − gk

1





2�

+ B2

�

f N
2 − f N−1

2 −



gN
1 , xN − xN−1

�

− 1
2L2



gN
2 − gN

1





2�

= − B2
2L2



gN
2 − gN

1





2 − B2
2L2

N
∑

k=2





gk−1
1 − gk

1 −
αL2
B2
(x k−1 − x k)







2
≤ 0,

where B2 =
L2

N(L2+µ1)−µ1
and α = 1−B2

N−1 − B2. Since we assume L2 > µ1, we
have B2, α≥ 0. The rest of the proof runs as before.

The important point is that the last result provides a rate of convergence even
if neither L1 nor L2 is finite, and we therefore state it as a corollary.
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Corollary 8.13. Let f1 ∈ Fµ1,∞(Rn) and f2 ∈ Fµ2,∞(Rn), i.e. consider any DC
decomposition in problem (8.1). Then, after N iterations of Algorithm 8.1, one has

min
0≤k≤N−1

f1(x
k)− f1(x

k+1)− 〈gk
2 , xk − xk+1〉 ≤

1
N

�

f (x0)− f ⋆
�

.

This result is new to the best of our knowledge.

8.5 Performance analysis of DCA with regularization

Pang et al. [PRA17] developed a version of Algorithm 8.1 with regularization. The
DCA with a regularization term is described in Algorithm 8.3. As r ≥ −min(µ1,µ2),

Algorithm 8.3 DCA with regularization

Pick x0 ∈ Rn, N ∈ N, r ≥ −min(µ1,µ2) and ε > 0.
For k = 0, 1, . . . , N − 1 perform the following steps:

1. Choose gk
1 ∈ ∂ f1(xk) and gk

2 ∈ ∂ f2(xk). If


gk
1 − gk

2



≤ ε , then stop.

2. Choose

xk+1 ∈ argminx∈Rn f1(x)− f2(x
k)−




gk
2 , x − xk

�

+ r
2



x − xk




2
. (8.25)

the regularization parameter may take negative values. Our aim for the investiga-
tion of regularization parameter on this large interval is to have a comprehensive
analysis. One can check that subproblem (8.25) is convex; see Lemma 8.3. It is
worth noting that they [PRA17] consider only the fixed regularization parameter
r = 1. Subproblem (8.25) may be reformulated as follows:

xk+1 ∈ argminx∈Rn f1(x) +
r
2∥x∥

2 − f2(x
k)− r

2∥xk∥2 −



gk
2 + r xk, x − xk

�

.

Corollary 8.14. Let f1 ∈ Fµ1,L1
(Rn), f2 ∈ Fµ2,L2

(Rn) and f = f1 − f2. If r ≥
−min(µ1,µ2), then f has a DC decomposition of form

f = f̄1 − f̄2,

where f̄1 ∈ Fµ1+r,L1+r(Rn) and f̄2 ∈ Fµ2+r,L2+r(Rn) given by f̄1(x) = f1(x)+
r
2∥x∥

2

and f̄2(x) = f2(x) +
r
2∥x∥

2.
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Proof. The proof is immediate from Lemma 8.3.

By Corollary 8.14, it is readily seen that Algorithm 8.3 is the same as Algorithm
8.1, but with a different decomposition of f . It is clear that ∂ f1(x) = ∂ f̄1(x)+ r x
and ∂ f2(x) = ∂ f̄2(x)+ r x . Hence, by using Theorem 8.6, the following corollary
gives a convergence rate for Algorithm 8.3.

Corollary 8.15. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn) and let L1 or L2 be finite.
Suppose that f (x0) − f ⋆ ≤ ∆ and r ≥ −min(µ1,µ2). Then after N iterations of
Algorithm 8.3, one has:

min
0≤k≤N



gk
1 − gk

2



≤
�

A
BN + C

·∆
�

1
2

,

where

A= 2
�

(L1 + r)(L2 + r)− (µ1 + r)(L2 + r)IR+ (L1 − L2)− (µ2 + r)(L1 + r)IR+ (L2 − L1)
�

,

B = (L1 + r) + (L2 + r) + (µ1 + r)
�

L1+r
L2+r − 3

�

IR+ (L1 − L2) + (µ2 + r)
�

L2+r
L1+r − 3

�

IR+ (L2 − L1) ,

and
C =

(L1 + r)(L2 + r)− IR+ (L1 − L2) (µ1 + r)(L2 + r)− IR+ (L2 − L1) (µ2 + r)(L1 + r)

L1 −µ2
.

One interesting question concerning Algorithm 8.3 is the choice of suitable
regularization parameter, r. By minimizing the right hand side of bound given
in Corollary 8.15 with respect to r, the next proposition provides the optimal
regularization parameter in terms of the worst-case convergence rate.

Proposition 8.16. Let the assumptions of Corollary 8.15 hold. Then, the optimal
regularization parameter is r̄ = −min(µ1,µ2).

Proof. By Corollary 8.15, the following optimization problem gives the optimal
regularization parameter,

min
r≥−min(µ1,µ2)

h(r) :=
(L1 + r)(L2 + r)− (µ1 + r)(L2 + r)

�

(L1 + r) + (L2 + r) + (µ1 + r)( L1+r
L2+r − 3)

�

N + L1 −µ1

.

It is readily seen that h is positive on [−min(µ1,µ2),∞). In addition, we have

dh(r)
dr

=
(L1 −µ1)(L2 + r)

�

2L2
2N − L2(µ1 + 4µ1N)−µ1(1+ 2N)r + L1(L2 + 2µ1N + r + 2N r)

�

�

L2
2N − L2(µ1 + 3µ1N)−µ1(1+ 2N)r + L1(L2 + L2N +µ1N + r + 2N r)

�2

=
(L1 −µ1)(L2 + r) (r(2N + 1)(L1 −µ1) + 2N (µ1(L1 − L2) + L2(L2 −µ1)) + L2(L1 −µ1))

�

L2
2N − L2(µ1 + 3µ1N)−µ1(1+ 2N)r + L1(L2 + L2N +µ1N + r + 2N r)

�2 .
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For r ≥ −min(µ1,µ2)≥ −µ1, we have

r(L1 −µ1) + L2
2 + L1µ1 − 2L2µ1 ≥ −µ1(L1 −µ1) + L2

2 + L1µ1 − 2L2µ1 = (L2 −µ1)
2 ≥ 0,

which implies positivity of dh(r)
dr on the given interval. Hence, the aforementioned

problem attains its minimum at r̄ = −min(µ1,µ2).

The result of Proposition 8.16 is unexpected. Due to Lemma 8.3, the Lip-
schitz modulus and strongly convex constant alter equally by the change of r.
The underlying reason for this result may be that Lipschitz modulus plays a more
important role than the strongly convex constant in the worst-case convergence
rate.

Remark 8.17. For undominated D.C. decompositions, one has min(µ1,µ2) = 0.
(Recall that a D.C. decomposition f = f1 − f2 is undominated if there is no other
D.C. decomposition, say f = f̂1 − f̂2, such that f1 − f̂1 is convex but not affine; see
e.g. [AH18] for more details on undominated D.C. decompositions, including their
construction for polynomials.)

Thus, if we only consider given instances with undominated decompositions f =
f1− f2, the optimal regularization parameter (with respect to the worst-case conver-
gence rate) is zero.

In the last part of the section, we investigate the nonsmooth case with regu-
larization. First, we need to adopt an appropriate termination criterion. Suppose
that r ≥ −min(µ1,µ2). Similar to the termination criterion (8.22), we stop the
algorithm if the following value is sufficiently small:

Tr(x
k+1) = f1(x

k)− f2(x
k)− min

x∈Rn

�

f1(x)− f2(x
k)−




gk
2 , x − xk

�

+ r
2



x − xk




2�

= f1(x
k)− f1(x

k+1)−



gk
2 , xk − xk+1

�

− r
2



xk − xk+1




2
. (8.26)

One has Tr(xk+1) ≥ 0 and one can show that ∂ f1(xk) ∩ ∂ f2(xk) ̸= ; providing
T (xk+1) = 0.

By defining convex functions f̄1(x) = f1(x)+
r
2∥x∥

2 and f̄2(x) = f2(x)+
r
2∥x∥

2,
it is readily seen that

Tr(x
k+1) = f̄1(x

k)− f̄1(x
k+1)−




gk
2 + r xk, xk − xk+1

�

.

By analysis similar to that of Corollary 8.15, the next remark provides a conver-
gence rate.
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Algorithm 8.4

Pick x0 ∈ Rn, N ∈ N, and ε > 0.
For k = 0,1, . . . , N − 1 perform the following steps:

1. Choose gk
2 ∈ ∂ f2(xk) and

xk+1 ∈ argminx∈Rn f1(x)− f2(x
k)−




gk
2 , x − xk

�

+ r
2



x − xk




2
. (8.27)

2. If f1(xk)− f1(xk+1)−



gk
2 , xk − xk+1

�

− r
2



xk − xk+1




2 ≤ ε, then stop.

Remark 8.18. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn). Then, after N iterations of
Algorithm 8.4, one has

min
0≤k≤N−1

f1(x
k)− f1(x

k+1)−



gk
2 , xk − xk+1

�

− r
2



xk − xk+1




2 ≤ (8.28)

min
§

L1 + r
N (L1 +µ2 + 2r)

,
L2 + r

N (L2 +µ1 + 2r)−µ1 − r

ª

�

f (x0)− f ⋆
�

.

Note that this result holds even if L1 and L2 are not finite. In this case one has the
bound

min
0≤k≤N−1

f1(x
k)− f1(x

k+1)−



gk
2 , xk − xk+1

�

− r
2



xk − xk+1




2 ≤
1
N

�

f (x0)− f ⋆
�

.

8.6 Linear convergence of the DCA under the Polyak-
Łojasiewicz inequality

In the section, we provide some sufficient conditions under which the DCA is
linearly convergent. Similar to the former sections, we employ the performance
estimation for obtaining convergence rate.

In recent years, the linear convergence of some optimization methods for non-
convex problems have been investigated under the Polyak-Łojasiewicz (PŁ) in-
equality; see [AdKZ23a, BNPS17, KNS16] alongside with Chapter 5 and the ref-
erence therein. We say that f satisfies PŁ inequality on X if there exists η > 0
such that

f (x)− f ⋆ ≤ 1
2η∥ξ∥

2, ∀x ∈ X ,∀ξ ∈ co(∂L f (x)). (8.29)

Note that when f is differentiable inequality (8.29) is a special case of (8.3) with
θ = 1

2 and different ground set. If f2 is strictly differentiable, we have have
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co(∂L f ) = ∂ f1 − ∂ f2; see Example 10.10 in [RW09]. Hence, the performance
estimation problem with the PŁ inequality may be formulated as follows:

max
( f 1

1 − f 1
2 )− f ⋆

( f 0
1 − f 0

2 )− f ⋆

s. t. 1

2(1−
µ1
L1
)

�

1
L1





g i
1 − g j

1







2
+µ1



x i − x j




2 − 2µ1
L1

¬

g j
1 − g i

1, x j − x i
¶

�

≤ f i
1 − f j

1 −
¬

g j
1, x i − x j

¶

i, j ∈ {0,1}

1

2(1−
µ2
L2
)

�

1
L2





g i
2 − g j

2







2
+µ2



x i − x j




2 − 2µ2
L2

¬

g j
2 − g i

2, x j − x i
¶

�

≤ f i
2 − f j

2 −
¬

g j
2, x i − x j

¶

i, j ∈ {0,1} (8.30)

f k
1 − f k

2 ≥ f ⋆ k ∈ {0,1}

g0
2 = g1

1
�

f k
1 − f k

2

�

− f ⋆ ≤ 1
2η∥g

k
1 − gk

2∥
2, k ∈ {0,1} .

The following lemma shows that η≤ L1.

Lemma 8.19. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn), where L1 is finite. If f
satisfies the PŁ inequality on X = {x : f (x) ≤ f (x0)} with modulus η > 0, then
η≤ L1.

Proof. Without loss of generality, assume that µ1 = µ2 = 0. Let g1 ∈ ∂ f1 and
g2 ∈ ∂ f2. According to the PŁ inequality,

f (x)− f ⋆ ≤
1

2η
∥g1 − g2∥2, ∀x ∈ X ,

and using Lemma 8.4, we obtain

1
2L1
∥g1 − g2∥2 ≤ f (x)− f ⋆, ∀x ∈ X ,

which implies η≤ L1.

By doing constraint aggregation in problem (8.30) as before (i.e. demonstrat-
ing a dual feasible solution and using weak duality), we obtain the following linear
convergence rate for the DCA under the PŁ inequality.
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Theorem 8.20. Let f1 ∈ Fµ1,L1
(Rn) and f2 ∈ Fµ2,L2

(Rn). If L1 is finite and if f
satisfies PŁ inequality on X = {x : f (x) ≤ f (x0)} with modulus 0 < η ≤ L1, then
for x1 from Algorithm 8.1, we have

f (x1)− f ⋆

f (x0)− f ⋆
≤

�

1− η
L1

1+ η
L2

�

. (8.31)

Proof. Since the given bound is independent of µ1 and µ2, without loss of gener-
ality, we assume that µ1 = µ2 = 0. In addition, we assume that f ⋆ = 0. Direct
calculation shows that

�

f 1
1 − f 1

2

�

− f ⋆ −

�

1− η
L1

1+ η
L2

�

��

f 0
1 − f 0

2

�

− f ⋆
�

+

�

1

1+ η
L2

�

×

�

f 0
1 − f 1

1 −



g1
1 , x0 − x1

�

− 1
2L1



g0
1 − g1

1





2�

+

�

1

1+ η
L2

�

�

f 1
2 − f 0

2 −



g1
1 , x1 − x0

�

− 1
2L2



g1
1 − g1

2





2�
+

� η
L1

1+ η
L2

�

×

�

1
2η



g0
1 − g1

1





2 − f 0
1 + f 0

2

�

+

� η
L2

1+ η
L2

�

�

1
2η



g1
1 − g1

2





2 − f 1
1 + f 1

2

�

= 0.

As all the multipliers in the last expression are non-negative, for any feasible so-
lution of problem (8.15), we have

f (x1)− f ⋆ −

�

1− η
L1

1+ η
L2

�

�

f (x0)− f ⋆
�

≤ 0,

completing the proof.

Note that Theorem 8.1 by Le Thi et al. [LTHPD18] does not imply Theorem
8.20 if inequality (8.3) holds on {x : f (x)≤ f (x0)} with θ = 1

2 , since we assume
neither strong convexity of f1 or f2, nor boundedness of the sequence of iterates.
Moreover, we give explicit expressions for the constants that determine the linear
convergence rate of the sequence of objective values.

8.7 Conclusion

We have shown that the performance estimation framework of Drori and Teboulle
[DT14] yields new insights into the convergence behavior of the Difference-of-
convex algorithm (DCA). As future work, one may also consider the convergence
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of the DCA on more restricted classes of DC problems, e.g. where f1 and f2 are
convex polynomials, as studied in [AH18]. For constrained problems, even the
case where f1 and f2 are quadratic polynomials is of interest, e.g. in the study of
(extended) trust region problems.
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Nothing contributes so much to tranquilize the mind as a steady purpose - a
point on which the soul may fix its intellectual eyes.

Mary W Shelley

9
The exact worst-case convergence rate of

the alternating direction method of
multipliers

Preamble

Recently, semidefinite programming performance estimation has been employed
as a strong tool for the worst-case performance analysis of first-order methods. In
this chapter, we derive new non-ergodic convergence rates for the alternating di-
rection method of multipliers (ADMM) by using performance estimation. We give
some examples which show the exactness of the given bounds. We also study the
linear and R-linear convergence of ADMM under some assumptions. We estab-
lish that ADMM enjoys a global linear convergence rate if and only if the dual
objective satisfies the Polyak-Łojasiewicz (PŁ) inequality in the presence of strong
convexity. In addition, we give an explicit formula for the linear convergence rate
factor. Moreover, we study the R-linear convergence of ADMM under two new
scenarios. This chapter is based on the paper [ZAdK23].
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9.1 Introduction

We consider the optimization problem

min
(x ,z)∈Rn×Rm

f (x) + g(z), (9.1)

s. t. Ax + Bz = b,

where f : Rn → R ∪ {∞} and g : Rm → R ∪ {∞} are closed proper convex
functions, 0 ̸= A ∈ Rr×n, 0 ̸= B ∈ Rr×m and b ∈ Rr . Moreover, we assume
that (x⋆, z⋆) is an optimal solution of problem (9.1) and λ⋆ is its corresponding
Lagrange multipliers. Moreover, we denote the value of f and g at x⋆ and z⋆ with
f ⋆ and g⋆, respectively.

Problem (9.1) appears naturally (or after variable splitting) in many appli-
cations in statistics, machine learning and image processing to name but a few
[BPC+11, ROF92, HTW15, LLF22]. The most common method for solving prob-
lem (9.1) is the alternating direction method of multipliers (ADMM). ADMM is a
dual based approach that exploits separable structure and it may be described as
follows.

Algorithm 9.1 ADMM

Set N and t > 0 (step length), pick λ0, z0.
For k = 1, 2, . . . , N perform the following step:

1. xk ∈ argmin f (x) + 〈λk−1, Ax〉+ t
2∥Ax + Bzk−1 − b∥2

2. zk ∈ argmin g(z) + 〈λk−1, Bz〉+ t
2∥Axk + Bz − b∥2

3. λk = λk−1 + t(Axk + Bzk − b).

ADMM was first proposed in [GM76, GM75] for solving nonlinear variational
problems. We refer the interested reader to [GOY17] for a historical review
of ADMM. The popularity of ADMM is due to its capability to be implemented
parallelly and hence can handle large-scale problems [BPC+11, Han22, MKL15,
SBG+20]. For example, it is used for solving inverse problems governed by par-
tial differential equation forward models [LV21], and distributed energy resource
coordinations [LSW+22], to mention but a few.

The convergence of ADMM has been investigated extensively in the litera-
ture and there exist many convergence results. However, different performance
measures have been used for the computation of convergence rate; see [FRV18,

https://2.zk/
https://3.xn--k-jmb/
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GOSB14, ST22, GMS13, HY12, MS13, LLF22, LL19]. In this chapter, we consider
the dual objective value as a performance measure.

Throughout the chapter, we assume that each subproblem in steps 1 and 2
of Algorithm 9.1 attains its minimum. The Lagrangian function of problem (9.1)
may be written as

L(x , z,λ) = f (x) + g(z) + 〈λ, Ax + Bz − b〉, (9.2)

and the dual objective of problem (9.1) is also defined as

D(λ) = min
(x ,z)∈Rn×Rm

f (x) + g(z) + 〈λ, Ax + Bz − b〉.

We assume throughout the chapter that strong duality holds for problem (9.1),
that is

max
λ∈Rr

D(λ) = min
Ax+Bz=b

f (x) + g(z).

Note that we have strong duality when both functions f and g are real-valued.
For extended convex functions, strong duality holds under some mild conditions;
see e.g. [Bec17, Chapter 15].

Some common performance measures for the analysis of ADMM are as follows,

• Objective value:
�

� f (xN ) + g(zN )− f ⋆ − g⋆
�

�;

• Primal and dual feasibility:


AxN + BzN − b


 and


AT B(zN − zN−1)


;

• Dual objective value: D(λ⋆)− D(λN );

• Distance between (xN , zN ,λN ) and a saddle point of problem (9.2).

Note that the mathematical expressions are written in a non-ergodic sense for
convenience. Each measure is useful in monitoring the progress and convergence
of ADMM. The objective value is the most commonly used performance measure
for the analysis of algorithms in convex optimization [Ber15, Bec17, Nes03]. As
mentioned earlier, ADMM is a dual based method and it may be interpreted as a
proximal method applied to the dual problem; see [Ber15, LLF22] for further dis-
cussions and insights. Thus, a natural performance measure for ADMM would be
dual objective value. In this study, we investigate the convergence rate of ADMM
in terms of dual objective value and feasibility. It worth noting that most perfor-
mance measures may be analyzed through the framework developed in Section
9.2.
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Regarding the dual objective value, the following convergence rate is known
in the literature. This theorem holds for strongly convex functions f and g; recall
that f is called strongly convex with modulus µ ≥ 0 if the function f − µ2∥ · ∥

2 is
convex.

Theorem 9.1. [GOSB14, Theorem 1] Let f and g be strongly convex with moduli

µ1 > 0 and µ2 > 0, respectively. If t ≤ 3

s

µ1µ
2
2

λmax(AT A)λ2
max(BT B) , then

D(λ⋆)− D(λN )≤
∥λ1 −λ⋆∥2

2t(N − 1)
. (9.3)

In this study we establish that Algorithm 9.1 has the convergence rate of O( 1
N )

in terms of dual objective value without assuming the strong convexity of g. Under
this setting, we also prove that Algorithm 9.1 has the convergence rate of O( 1

N )
in terms of primal and dual residuals. Moreover, we show that the given bounds
are exact. Furthermore, we study the linear and R-linear convergence.

Outline of the chapter

The chapter is structured as follows. We present the semidefinite programming
(SDP) performance estimation method of ADMM in Section 9.2, and we develop
the performance estimation to handle dual based methods including ADMM. In
Section 9.3, we derive some new non-asymptotic convergence rates by using per-
formance estimation for ADMM in terms of dual function, primal and dual resid-
uals. Furthermore, we show that the given bounds are tight by providing some
examples. In Section 9.4 we proceed with the study of the linear convergence of
ADMM. We establish that ADMM enjoys a linear convergence if and only if the
dual function satisfies the PŁ inequality when the objective function is strongly
convex. Furthermore, we investigate the relation between the PŁ inequality and
common conditions used by scholars to prove the linear convergence. Section
9.5 is devoted to the R-linear convergence. We prove that ADMM is R-linear con-
vergent under two new scenarios which are weaker than the existing ones in the
literature.

Terminology and notation

We have the following identity

ξ ∈ ∂ f (x) ⇔ x ∈ ∂ f ∗(ξ). (9.4)
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By using conjugate functions, the dual of problem (9.1) may be written as

D(λ) = min
(x ,z)∈Rn×Rm

f (x) + g(z) + 〈λ, Ax + Bz − b〉

= −〈λ, b〉 − f ∗(−ATλ)− g∗(−BTλ). (9.5)

By the optimality conditions for the dual problem, we get

b− Ax⋆ − Bz⋆ = 0, (9.6)

for some x⋆ ∈ ∂ f ∗(−ATλ⋆) and z⋆ ∈ ∂ g∗(−BTλ⋆). Equation (9.6) with (9.4)
imply that (x⋆, z⋆) is an optimal solution to problem (9.1).

The optimality conditions for the subproblems of Algorithm 9.1 may be written
as

0 ∈ ∂ f (xk) + ATλk−1 + tAT
�

Axk + Bzk−1 − b
�

,

0 ∈ ∂ g(zk) + BTλk−1 + tBT
�

Axk + Bzk − b
�

. (9.7)

As λk = λk−1 + t(Axk + Bzk − b), we get

0 ∈ ∂ f (xk) + ATλk + tAT B
�

zk−1 − zk
�

, 0 ∈ ∂ g(zk) + BTλk. (9.8)

So, (xk, zk) is optimal for dual objective at λk if and only if AT B
�

zk−1 − zk
�

= 0.
We call AT B

�

zk−1 − zk
�

dual residual.

9.2 Performance estimation

In this section, we develop the performance estimation for ADMM. Gu and Yang
[GY20] employed performance estimation to study the extension of the dual step
length for ADMM. Note that while there are some similarities between our work
and [GY20] in using performance estimation, the formulations and results are
different.

The worst-case convergence rate of Algorithm 9.1 with respect to dual objec-
tive value may be cast as the following abstract optimization problem,

max D(λ⋆)− D(λN )

s. t. {xk, zk,λk}N1 is generated by Algorithm 9.1 w.r.t. f , g, A, B, b,λ0, z0, t

(x⋆, z⋆) is an optimal solution with Lagrangian multipliers λ⋆

∥λ0 −λ⋆∥2 + t2


z0 − z⋆




2
B =∆

f ∈ FA
c1,∞(R

n), g ∈ FB
c2,∞(R

m) (9.9)

λ0 ∈ Rr , z0 ∈ Rm, A∈ Rr×n, B ∈ Rr×m, b ∈ Rr ,
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where f , g, A, B, b, z0,λ0, x⋆, z⋆,λ⋆ are decision variables and N , t, c1, c2,∆ are the
given parameters. Note that problem (9.9) will be unbounded unless we impose
some initial condition. We regard boundedness of ∥λ0−λ⋆∥2+ t2



z0 − z⋆




2
B as an

initial condition. The boundedness of t−1∥λ0 − λ⋆∥2 + t


z0 − z⋆




2
B is commonly

used for the convergence analysis of ADMM; see e.g. [BPC+11, LLF22]. We opt
to utilize the positive multiplication of this criterion for notational convenience
as t is a fixed positive constant in Algorithm 9.1. Moreover, we use this measure
to establish R-linear convergence in terms of dual objective; see Section 9.5 for
more discussion.

Note that D(λ⋆) = f ⋆+ g⋆ and ( x̃ , z̃) ∈ argmin f (x)+ g(z)+ 〈λN , Ax +Bz− b〉
if and only if

ξ̃+ ATλN = 0, η̃+ BTλN = 0, (9.10)

for some ξ̃ ∈ ∂ f ( x̃) and η̃ ∈ ∂ g(z̃). It is worth noting that a point x̃ satisfying
these conditions exists, as function f is strongly convex relative to A. In addition,
one may consider z̃ = zN by virtue of (9.8). For the sake of notational conve-
nience, we introduce xN+1 = x̃ and ξN+1 = ξ̃. The reader should bear in mind
that xN+1 is not generated by Algorithm 9.1. Therefore,

D(λN ) = f (xN+1) + g(zN ) +



λN , AxN+1 + BzN − b
�

for some xN+1 with −ATλN ∈ ∂ f (xN+1).

By using Theorem 2.40 to replace the conditions f ∈ FA
c1,∞(R

n), and g ∈
FB

c2,∞(R
m) by finite interpolation conditions, and by using the optimality condi-

tions (9.7), problem (9.9) may be reformulated as a finite dimensional optimiza-
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tion problem, through the performance estimation technique:

max f ⋆ + g⋆ −
�

f N+1 + gN +



λN , AxN+1 + BzN − b
��

s. t. {(xk;ξk; f k)}N+1
1 ∪ {(x⋆;ξ⋆; f ⋆)} satisfy interpolation constraints (2.5)

{(zk;ηk; gk)}N0 ∪ {(z
⋆;η⋆; g⋆)} satisfy interpolation constraints (2.5)

(x⋆, z⋆) is an optimal solution with Lagrangian multipliers λ⋆

∥λ0 −λ⋆∥2 + t2


z0 − z⋆




2
B =∆ (9.11)

ξk = tAT b− tAT Axk − tAT Bzk−1 − ATλk−1, k ∈ {1, ..., N}

ηk = tBT b− tBT Axk − tBT Bzk − BTλk−1, k ∈ {1, ..., N}

λk = λk−1 + t(Axk + Bzk − b), k ∈ {1, ..., N}

ξN+1 + ATλN = 0

λ0 ∈ Rr , z0 ∈ Rm, A∈ Rr×n, B ∈ Rr×m, b ∈ Rr .

In problem (9.11), A, B, {xk;ξk; f k}N+1
1 , {(x⋆;ξ⋆; f ⋆)}, {λk}N0 , {zk;ηk; gk}N0 ,

{(z⋆;η⋆; g⋆)},λ⋆, b are decision variables. To handle problem (9.11), without loss
of generality, we assume that the matrix

�

A B
�

has full row rank. Note this as-
sumption does not appear in our arguments in the following sections. In addition,
we introduce some new variables. As problem (9.1) is invariant under translation
of (x , z), we may assume without loss of generality that b = 0 and (x⋆, z⋆) = (0,0).
In addition, due to the full row rank of the matrix

�

A B
�

, we may assume that

λ0 =
�

A B
�

�

x†

z†

�

and λ⋆ =
�

A B
�

�

x̄
z̄

�

for some x̄ , x†, z̄, z†. So,

ξ⋆ = −AT Ax̄ − AT Bz̄ ∈ ∂ f (0), η⋆ = −BT Ax̄ − BT Bz̄ ∈ ∂ g(0),

and D(λ⋆) = f ⋆ + g⋆.
By using equality constraints of problem (9.11) and the newly introduced vari-

ables, we have for k ∈ {1, ..., N}

λk = (Ax† + Bz†) +
k
∑

i=1

t(Ax i + Bz i), (9.12)

− (AT Ax† + AT Bz†)−
k−1
∑

i=1

t(AT Ax i + AT Bz i)− tAT Ax k − tAT Bzk−1 ∈ ∂ f (x k),

− (BT Ax† + BT Bz†)−
k
∑

i=1

t(BT Ax i + BT Bz i) ∈ ∂ g(zk).
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Hence, problem (9.11) may be written as

max f ⋆ + g⋆ − f N+1 − gN −

®

Ax† + Bz† +
N
∑

i=1

t(Ax i + Bz i), AxN+1 + BzN

¸

s. t. c1
2



x k − x j




2
A ≤

®

Ax† + Bz† +
k−1
∑

i=1

t(Ax i + Bz i) + tAx k + tBzk−1, A(x j − x k)

¸

+

f j − f k, k ∈ {1, . . . , N}, j ∈ {1, . . . , N + 1},

c1
2



xN+1 − x j




2
A ≤

®

Ax† + Bz† +
N
∑

i=1

t(Ax i + Bz i), A
�

x j − xN+1
�

¸

+

f j − f N+1, j ∈ {1, . . . , N},

c2
2



zk − z j




2
B ≤

®

Ax† + Bz† +
k
∑

i=1

t(Ax i + Bz i), B
�

z j − zk
�

¸

+

g j − gk, j, k ∈ {1, . . . , N}, (9.13)
c1
2



x k




2
A ≤ f k − f ⋆ +




Ax̄ + Bz̄, Ax k
�

, k ∈ {1, . . . , N + 1},

c1
2



x k




2
A ≤ −

®

Ax† + Bz† +
k−1
∑

i=1

t(Ax i + Bz i) + tAx k + tBzk−1, Ax k

¸

+

f ⋆ − f k, k ∈ {1, . . . , N},

c1
2



xN+1




2
A ≤ f ⋆ − f N+1 −

®

Ax† + Bz† +
N
∑

i=1

t(Ax i + Bz i), AxN+1

¸

,

c2
2



zk




2
B ≤ gk − g⋆ +




Ax̄ + Bz̄, Bzk
�

, k ∈ {1, . . . , N},

c2
2



zk




2
B ≤ g⋆ − gk −

®

Ax† + Bz† +
k
∑

i=1

t(Ax i + Bz i), Bzk

¸

, k ∈ {1, . . . , N},



Ax† + Bz† − (Ax̄ + Bz̄)




2
+ t2



z0




2
B =∆,

x† ∈ Rn, z0, z† ∈ Rm, A∈ Rr×n, B ∈ Rr×m.

In problem (9.13), A, B, {xk, f k}N+1
1 , {zk, gk}N1 , x†, z†, x̄ , f ⋆, z̄, g⋆, z0 are deci-

sion variables. By using the Gram matrix method, problem (9.13) may be relaxed
as a semidefinite program as follows. Let

U =
�

x† x1 . . . xN+1 x̄
�

, V =
�

z† z0 . . . zN z̄
�

.

By introducing matrix variable

Y =
�

AU BV
�T �

AU BV
�

,
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problem (9.13) may be relaxed as the following SDP,

max f ⋆ + g⋆ − f N+1 − gN − tr(LoY )

s. t. tr(L f
i, jY )≤ f i − f j , i, j ∈ {1, ..., N + 1,⋆}

tr(Lg
i, jY )≤ g i − g j , i, j ∈ {1, ..., N ,⋆}

tr(L0Y ) =∆ (9.14)

Y ⪰ 0,

where the constant matrices L f
i, j , Lg

i, j , Lo, L0 are determined according to the con-
straints of problem (9.13). In the following sections, we present some new con-
vergence results that are derived by solving this kind of formulation.

9.3 Worst-case convergence rate

In this section, we provide new convergence rates for ADMM with respect to some
performance measures. Before we get to the theorems we need to present some
lemmas.

Lemma 9.2. Let N ≥ 4 and t, c ∈ R. Let E(t, c) be (N + 1)× (N + 1) symmetric
matrix given by

E(t, c) =





























2c 0 0 0 . . . 0 0 . . . 0 t − c
0 α2 β2 0 . . . 0 0 . . . 0 −t
0 β2 α3 β3 . . . 0 0 . . . 0 t
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . αk βk . . . 0 t
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0 . . . αN βN

t − c −t t t . . . t t . . . βN αN+1





























,

where

αk =



















6c − 5t, k = 2

2
�

2k2 − 3k+ 1
�

c − (4k− 1) t, 3≤ k ≤ N − 1

2N(N − 1)c − (2N + 1)t, k = N

2Nc − (N + 1)t, k = N + 1,

βk =

¨

2kt − (2k2 − k− 1)c, 2≤ k ≤ N − 1

3t − 2(N − 1)c, k = N ,
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and k denotes row number. If c > 0 is given, then

[0, c] ⊆ {t : E(t, c)⪰ 0}.

Proof. As {t : E(t, c)⪰ 0} is a convex set, it suffices to prove the positive semidef-
initeness of E(0, c) and E(c, c). Since E(0, c) is diagonally dominant, it is positive
semidefinite. Now, we establish that the matrix K = E(1,1) is positive definite. To
this end, we show that all leading principal minors of K are positive. To compute
the leading principal minors, we perform the following elementary row operations
on K:

i) Add the second row to the third row;

ii) Add the second row to the last row;

iii) Add the third row to the forth row;

iv) For i = 4 : N − 1

• Add i − th row to (i + 1)− th row;

• Add 3−i
2i2−3i−1 times of i − th row to the last row;

v) Add N−1
3N−5 times of N − th row to (N + 1)− th row.

It is seen that Kk−1,k + Kk,k = −Kk+1,k for 2 ≤ k ≤ N − 1. Hence, by performing
these operations, we get an upper triangular matrix J with diagonal

Jk,k =























2, k = 1

2k2 − 3k− 1, 2≤ k ≤ N − 1

3N − 5, k = N

N − 2− (N−1)2
3N−5 −

∑N−1
i=4

(i−3)2

2i2−3i−1 , k = N + 1.

It is seen all first N diagonal elements of J are positive. We show that JN+1,N+1 is
also positive. For i ≥ 4 we have

(i−3)2

2i2−3i−1 ≤
(i−1)2+4
2(i−1)2 ≤

1
2 +

2
(i−1)(i−2) . (9.15)

So,

2N2−9N+9
3N−5 −

N−1
∑

i=4

(i−3)2

2i2−3i−1 ≥
(N−2)(N2−5N+10)

2N(3N−5) > 0,
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which implies JN+1,N+1 > 0. Since we add a factor of i− th row to j− th row with
i < j, all leading principal minors of matrices K and J are the same. Hence K is
positive definite. As E(c, c) = cK , one can infer the positive definiteness of E(c, c)
and the proof is complete.

In the upcoming lemma, we establish a valid inequality for ADMM that will
be utilized in all the subsequent results presented in this section.

Lemma 9.3. Let f ∈ FA
c1,∞(R

n), g ∈ F0,∞(Rm) and x⋆ = 0, z⋆ = 0. Suppose that

ADMM with the starting points λ0 and z0 generates {(xk; zk;λk)}. If N ≥ 4 and
v ∈ Rr , then

N〈λN , AxN + BzN 〉 − 〈λN + tAxN + tBzN−1, AxN − v〉+ 〈λ0 + tAx1 + tBz0, Ax1 − v〉+
1
2t



λ0 −λ⋆




2 − 1
2t



λN −λ⋆




2
+ t

2



z0




2
B − t




Ax1 − Ax2 + (N + 1)AxN + BzN , v
�

−

t
N
∑

k=3

〈Ax k, v〉+ t(N−1)
2 ∥v∥2 − c1

2



x1




2
A+

N
∑

k=2

αk
2



x k




2
A+

N−1
∑

k=2

βk〈Ax k, Ax k+1〉+

tN〈BzN−1, AxN − v〉+ t〈AxN , BzN 〉 − t(N−1)2

2



zN − zN−1




2
B −

tN2

2



AxN + BzN




2−

t


x2




2
A+ f (x1)− f (xN ) + N

�

f (xN )− f ⋆ + g(xN )− g⋆
�

≥ 0, (9.16)

where

αk =

¨

(4k− 1) t − 2
�

2k2 − 3k+ 1
�

c1, 2≤ k ≤ N − 1,

(4N + 1) t −
�

2N2 − 5N + 3
�

c1, k = N ,

βk =
�

2k2 − k− 1
�

c1 − 2kt.

Proof. To establish the desired inequality, we demonstrate its validity by summing
a series of valid inequalities. To simplify the notation, let f k = f (xk) and gk =
g(zk) for k ∈ {1, . . . , N}. Note that b = 0 because x⋆ = 0, z⋆ = 0. By (2.5) and
(9.7), we get the following inequality
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N−1
∑

k=1

(k2 − 1)
�

f k+1 − f k +



λk−1 + tAx k + tBzk−1, A(x k+1 − x k)
�

− c1
2



x k+1 − x k




2
A

�

+
N−1
∑

k=1

(k2 − k)
�

f k − f k+1 +



λk + tAx k+1 + tBzk, A(x k − x k+1)
�

− c1
2



x k+1 − x k




2
A

�

+
N
∑

k=1

�

f k − f ⋆ +



λ⋆, Ax k
�

− c1
2



x k




2
A

�

+
N−1
∑

k=1

k2
�

gk − gk+1 +



λk+1, B(zk − zk+1)
��

+
N−1
∑

k=1

(k2 + k)
�

gk+1 − gk +



λk, B(zk+1 − zk)
��

+
N
∑

k=1

�

gk − g⋆ +



λ⋆, Bzk
��

+ t
2



Ax1 + Bz0 − v




2 ≥ 0.

As λk = λk−1 + tAxk + tBzk, the inequality can be expressed as

N−1
∑

k=1

(k2 − 1)
�




tAx k + tBzk−1, A(x k+1 − x k)
�

− c1
2



x k+1 − x k




2
A

�

+

N−1
∑

k=1

(k2 − 1)
�


λk, Ax k+1
�

−



λk−1, Ax k
�

−



tAx k + tBzk, Ax k+1
��

+

N−1
∑

k=1

(k2 − k)
�




tAx k+1 + tBzk, A(x k − x k+1)
�

− c1
2



x k+1 − x k




2
A

�

+

N−1
∑

k=1

(k2 − k)
�


λk−1, Ax k
�

−



λk, Ax k+1
�

+



tAx k + tBzk, Ax k
��

+

N−1
∑

k=1

(k2 + k)
�


λk, Bzk+1
�

−



λk−1, Bzk
�

−



tAx k + tBzk, Bzk
��

+

N−1
∑

k=1

k2

�




λk−1, Bzk
�

−



λk, Bzk+1
�

+



tAx k + tBzk + tAx k+1 + tBzk+1, Bzk
�

−




tAx k+1 + tBzk+1, Bzk+1
�

�

+
N
∑

k=1

�




λ⋆, Ax k + Bzk
�

− c1
2



x k




2
A

�

+ t
2



Bz0




2
+

t
2



Ax1 − v




2
+ t




Ax1 − v, Bz0
�

+ f 1 − f N + N( f N − f ⋆ + gN − g⋆)≥ 0.
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After performing some algebraic manipulations, we obtain

N〈λN−1, AxN + BzN 〉 − 〈λN−1, AxN 〉+ 〈λ0, Ax1〉 −
N−1
∑

k=0

〈λk −λ⋆, Ax k+1 + Bzk+1〉+

t
2



Ax1 − v




2
+ t

2



Bz0




2
+ t




Ax1 − v, Bz0
�

− t(N2 − 3N + 1)〈AxN , BzN−1〉−

t
N−1
∑

k=1

�

(k− 1)2∥Ax k∥2 − (k2 − k)〈Ax k, Ax k+1〉 − (k2 − 1)〈Ax k+1, Bzk−1〉
�

−

t
N−1
∑

k=1

�

(k2 − k+ 1)∥Bzk∥2 + (−k2 + k+ 1)〈Ax k, Bzk〉 − k2〈Bzk, Bzk+1〉
�

−

t
N−1
∑

k=2

�

(2k2 − 3k)〈Ax k, Bzk−1〉
�

− t(N − 1)2∥BzN∥2 − t(N2 − 3N + 2)∥AxN∥2−

t(N − 1)2〈AxN , BzN 〉 −
N−1
∑

k=1

�

(2k2 − k− 1) c1
2



x k+1 − x k




2
A+

c1
2



x k+1




2
A

�

−

c1
2



x1




2
A+ f 1 − f N + N( f N − f ⋆ + gN − g⋆)≥ 0.

By using λN−1 = λN − tAxN − tBzN and

2〈λk −λ⋆, Axk+1 + Bzk+1〉= 1
t ∥λ

k+1 −λ⋆∥2 − 1
t ∥λ

k −λ⋆∥2 − t∥Axk+1 + Bzk+1∥2,

we get

N〈λN , AxN + BzN 〉 − 〈λN + tAxN + tBzN−1, AxN − v〉+ 〈λ0 + tAx1 + tBz0, Ax1 − v〉

+ 1
2t



λ0 −λ⋆




2 − 1
2t



λN −λ⋆




2
+ t

2



z0




2
B − t




Ax1 − Ax2 + (N + 1)AxN + BzN , v
�

− t
N
∑

k=3




Ax k, v
�

− t
2

N−1
∑

k=2



(k− 1)Bzk−1 − (k− 1)Bzk + kAx k − (k+ 1)Ax k+1 + v




2

+ t(N−1)
2 ∥v∥2 −

c1

2



x1




2
A− 2t



x2




2
A+

1
2

N−1
∑

k=2

�

(4k− 1) t − 2
�

2k2 − 3k+ 1
�

c1

�

x k




2
A

+
N−1
∑

k=2

��

2k2 − k− 1
�

c1 − 2kt
�

〈Ax k, Ax k+1〉+
��

2N + 1
2

�

t −
�

N2 − 5
2 N + 3

2

�

c1

�

xN




2
A

+ tN



BzN−1, AxN − v
�

+ t



AxN , BzN
�

− t(N−1)2

2



zN − zN−1




2
B

− tN2

2



AxN + BzN




2
+ f 1 − f N + N

�

f N − f ⋆ + gN − g⋆
�

≥ 0,

which implies the desired inequality.

We may now prove the main result of this section.
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Theorem 9.4. Let f ∈ FA
c1,∞(R

n) and g ∈ F0,∞(Rm) with c1 > 0. If t ≤ c1 and
N ≥ 4, then

D(λ⋆)− D(λN )≤
∥λ0 −λ⋆∥2 + t2



z0 − z⋆




2
B

4N t
. (9.17)

Proof. As discussed in Section 9.2, we may assume that x⋆ = 0 and z⋆ = 0. By
(9.10), we have D(λN ) = f ( x̂N ) + g(zN ) +




λN , Ax̂N + BzN
�

for some x̂N with
−ATλN ∈ ∂ f ( x̂N ). By employing (2.5) and (9.7), we obtain

N
�

g(xN )− g⋆ + 〈λ⋆, BzN 〉
�

+ (N − 1)
�

f (xN )− f ⋆ + 〈λ⋆, AxN 〉 − c1
2



xN




2
A

�

+
�

f ( x̂N )− f (x1) +



λ0 + tAx1 + tBz0, Ax̂N − Ax1
�

− c1
2



 x̂N − x1




2
A

�

+

(2N − 2)

�

f ( x̂N )− f (xN ) +



λN − tBzN + tBzN−1, Ax̂N − AxN
�

−

c1
2



 x̂N − xN




2
A

�

+
�

f ( x̂N )− f ⋆ + 〈λ⋆, Ax̂N 〉 − c1
2



 x̂N




2
A

�

≥ 0. (9.18)

By substituting v with Ax̂N in inequality (9.16) and summing it with (9.18), we
get the following inequality after performing some algebraic manipulations

2N
�

f ( x̂N ) + g(xN ) +



λN , Ax̂N + BzN
�

− f ⋆ − g⋆
�

+ 1
2t



λ0 −λ⋆




2
+ t

2



z0




2
B −

1
2t



λN −λ⋆ + t(N − 1)AxN + tAx̂N + tNBzN




2−
t
2



(N − 1)(BzN−1 − BzN ) + tAxN − tAx̂N




2− (9.19)

1
2 tr

�

E(t, c1)
�

Ax1 . . . Ax̂N
�T �

Ax1 . . . Ax̂N
�

�

≥ 0,

where the positive semidefinite matrix E(t, c1) is given in Lemma 9.2. As the
inner product of positive semidefinite matrices is non-negative, inequality (9.19)
implies that

2N
�

D(λ⋆)− D(λN )
�

≤ 1
2t



λ0 −λ⋆




2
+ t

2



z0




2
B ,

and the proof is complete.

In comparison with Theorem 9.1, we get a new convergence rate when only f
is strongly convex, i.e. g does not need to be strongly convex. Also, the constant
does not depend on λ1. One important question concerning bound (9.17) is its
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tightness, that is, if there is an optimization problem which attains the given con-
vergence rate. It turns out that the bound (9.17) is exact. The following example
demonstrates this point.

Example 9.5. Suppose that c1 > 0, N ≥ 4 and t ∈ (0, c1]. Let f , g : R → R be
given as follows,

f (x) = 1
2 |x |+

c1
2 x2, g(z) = 1

2 max{N−1
N (z −

1
2N t )−

1
2N t ,−z}.

Consider the optimization problem

min
(x ,z)∈R×R

f (x) + g(z),

s. t. x + z = 0,

It is seen that A= B = I in this problem. Note that (x⋆, z⋆) = (0, 0) with Lagrangian
multiplier λ⋆ = 1

2 is an optimal solution and the optimal value is zero. One can check
that Algorithm 9.1 with initial point λ0 = −1

2 and z0 = 0 generates the following
points,

xk = 0 k ∈ {1, . . . , N}

zk = 1
2N t k ∈ {1, . . . , N}

λk = −1
2 +

k
2N k ∈ {1, . . . , N}.

At λN , we have D(λN ) = −1
4N t = −

∥λ0−λ⋆∥2+t2∥z0−z⋆∥2
B

4N t , which shows the tightness of
bound (9.17).

One important factor concerning dual-based methods that determines the effi-
ciency of an algorithm is primal and dual feasibility (residual) convergence rates.
In what follows, we study this subject under the setting of Theorem 9.4. The next
theorem gives a convergence rate in terms of primal residual under the setting of
Theorem 9.4.

Theorem 9.6. Let f ∈ FA
c1,∞(R

n) and g ∈ F0,∞(Rm) with c1 > 0. If t ≤ c1 and
N ≥ 4, then



AxN + BzN − b


≤

q

∥λ0 −λ⋆∥2 + t2 ∥z0 − z⋆∥2B
tN

. (9.20)



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 186PDF page: 186PDF page: 186PDF page: 186

170

Proof. The argument is similar to that used in the proof of Theorem 9.4. By setting
v = AxN in (9.16), one can infer the following inequality

N



λN , AxN + BzN
�

+



λ0 + tAx1 + tBz0, Ax1 − AxN
�

+ 1
2t



λ0 −λ⋆




2
+ t

2



z0




2
B −

t



Ax1 − Ax2, AxN
�

+ t(N−1)
2



AxN




2 − t
N
∑

k=3




Ax k, AxN
�

−
c1

2



x1




2
A− t



x2




2
A+

N−1
∑

k=2

��

2k− 1
2

�

t −
�

2k2 − 3k+ 1
�

c1

�

x k




2
A+

��

3
2 N − 3

2

�

t −
�

N2 − 5
2 N + 3

2

�

c1

�

xN




2
A+

N−1
∑

k=2

��

2k2 − k− 1
�

c1 − 2kt
�

〈Ax k, Ax k+1〉 − t(N−1)2

2



zN − zN−1




2
B −

tN2

2



AxN + BzN




2
+ f (x1)− f (xN ) + N

�

f (xN )− f ⋆ + g(xN )− g⋆
�

≥ 0. (9.21)

By employing (2.5) and (9.7), we have

N
�

f ⋆ − f (xN )− 〈λN + BzN−1 − BzN , AxN 〉 − c1
2



xN




2
A

�

+
�

f (xN )− f 1 +



λ0 + tAx1 + tBz0, AxN − Ax1
�

− c1
2



xN − x1




2
A

�

+ (9.22)

N
�

g⋆ − g(xN )− 〈λN , BzN 〉
�

≥ 0.

By summing (9.21) and (9.22), we obtain

1
2t



λ0 −λ⋆




2
+ t

2



z0




2
B −

t(N−1)2

2





zN−1 − zN + N
(N−1)2 xN







2

B
−

tN2

2



AxN + BzN




2 − 1
2 tr

�

D(t, c1)
�

Ax1 . . . AxN
�T �

Ax1 . . . AxN
�

�

≥ 0, (9.23)

where the matrix D(t, c1) is as follows,

D(t, c1) =





























2c1 0 0 0 . . . 0 0 . . . 0 t − c1

0 α2 β2 0 . . . 0 0 . . . 0 −t
0 β2 α3 β3 . . . 0 0 . . . 0 t
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . αk βk . . . 0 t
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0 . . . αN−1 βN−1

t − c1 −t t t . . . t t . . . βN−1 αN





























,
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and

αk =















6c1 − 5t, k = 2

2
�

2k2 − 3k+ 1
�

c1 − (4k− 1) t, 3≤ k ≤ N − 1,
�

2N2 − 4N + 4
�

c1 −
�

3N − 5+ N2

(N−1)2

�

t, k = N ,

βk = 2kt −
�

2k2 − k− 1
�

c1, 2≤ k ≤ N − 1

As the matrix D(t, c1) is positive semidefinite, see Appendix A.3 Lemma A.1, in-
equality (9.23) implies that

tN2

2



AxN + BzN




2 ≤ 1
2t



λ0 −λ⋆




2
+ t

2



z0




2
B ,

and the proof is complete.

The following example shows the exactness of bound (9.20).

Example 9.7. Let c1 > 0, N ≥ 4 and t ∈ (0, c1]. Consider functions f , g : R→ R
given by the formulae follows,

f (x) = 1
2 |x |+

c1
2 x2,

g(z) =max{
�1

2 −
1
N

� �

z − 1
N t

�

, 1
2

� 1
N t − z

�

}.

We formulate the following optimization problem,

min
(x ,z)∈R×R

f (x) + g(z),

s. t. Ax + Bz = 0,

where A = B = I . One can verify that (x⋆, z⋆) = (0, 0) with Lagrangian multiplier
λ⋆ = 1

2 is an optimal solution. Algorithm 9.1 with initial point λ0 = −1
2 and z0 = 0

generates the following points,

xk = 0 k ∈ {1, . . . , N}

zk = 1
N t k ∈ {1, . . . , N}

λk = 2k−N
2N k ∈ {1, . . . , N}.

At iteration N, we have ∥AxN +BzN∥= 1
tN =

q

∥λ0−λ⋆∥2+t2∥z0−z⋆∥2B
tN , which shows the

tightness of bound (9.20).
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In what follows, we study the convergence rate of ADMM in terms of resid-
ual dual. To this end, we investigate the convergence rate of {B

�

zk−1 − zk
�

} as


AT B
�

zk−1 − zk
�

≤ ∥A∥


zk−1 − zk




B. The next theorem provides a convergence
rate for the aforementioned sequence.

Theorem 9.8. Let f ∈ FA
c1,∞(R

n) and g ∈ F0,∞(Rm) with c1 > 0. If t ≤ c1 and
N ≥ 4, then



zN − zN−1




B ≤

q

∥λ0 −λ⋆∥2 + t2 ∥z0 − z⋆∥2B
(N − 1)t

. (9.24)

Proof. Similar to the proof of Theorem 9.4, by setting v = AxN in (9.16) for N −1
iterations, one can infer the following inequality

(N − 1)〈λN−1, AxN−1 + BzN−1〉+ 1
2t ∥λ

0 −λ⋆∥2 − 1
2t ∥λ

N−1 −λ⋆∥2+
t
2



z0




2
B − 〈λ

N−1 + tAxN−1 + tBzN−2, AxN−1 − AxN 〉+ t(N−2)
2 ∥x

N∥2A+

〈λ0 + tAx1 + tBz0, Ax1 − AxN 〉 − t



Ax1 − Ax2 + NAxN−1 + BzN−1, AxN
�

+
1
2

N−2
∑

k=2

�

(4k− 1) t − 2
�

2k2 − 3k+ 1
�

c1

�

xk




2
A+ t〈AxN−1, BzN−1〉+

N−2
∑

k=2

��

2k2 − k− 1
�

c1 − 2kt
�

〈Axk, Axk+1〉+ t(N − 1)〈BzN−2, AxN−1 − AxN 〉

+
1
2

�

(4N − 3) t −
�

2N2 − 9N + 10
�

c1

�

xN−1




2
A− t



x2




2
A−

c1
2



x1




2
A−

t(N−2)2
2



zN−1 − zN−2




2
B −

t(N−1)2
2 ∥AxN−1 + BzN−1∥2 − t

N−1
∑

k=3

〈Axk, AxN 〉+

f (x1)− f (xN−1) + (N − 1)( f (xN−1)− f ⋆ + g(xN−1)− g⋆)≥ 0. (9.25)
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By using (2.5) and (9.7), we have

(N2 − 3N + 2)
�

f (xN−1)− f (xN ) +



λN−1 + tAxN + tBzN−1, A
�

xN−1 − xN
��

−

c1
2



xN − xN−1




2
A

�

+
�

f (xN )− f (x1) +


λ0 + tAx1 + tBz0, A
�

xN − x1
�

·

−

c1
2 ∥x

N − x1∥2A

�

+ N(N − 1)
�

g(zN )− g(zN−1) +



λN−1, B
�

zN − zN−1
���

+ (9.26)

(N2 − 3N + 1)
�

f (xN )− f (xN−1) +


λN−1 − tBzN−1 + tBzN−2, A
�

xN − xN−1
�

·

− c1
2 ∥x

N − xN−1∥2A

�

+ (N − 1)
�

g⋆ − g(zN )−



λN−1 + tAxN + tBzN , BzN
��

+

(N − 1)
�

f ⋆ − f (xN−1)−


λN−1 − tBzN−1 + tBzN−2, AxN−1
·

− c1
2 ∥x

N−1∥2A

�

+

(N − 1)2
�

g(zN−1)− g(zN ) +



λN−1 + tAxN + BzN , B
�

zN−1 − zN
���

≥ 0.

By summing (9.25) and (9.26), we obtain

1
2t



λ0 −λ⋆




2
+ t

2



z0




2
B −

(N2−1)t
2





N
N+1 AxN + BzN





2 −
t(N − 1)2

2



zN − zN−1




2
B −

(N−2)2 t
2









BzN−2 − BzN−1 + N−1
N−2 AxN−1 −

�

1− 1
(N−2)2

�

AxN









2

−

1
2 tr

�

F(t, c1)
�

Ax1 . . . AxN
�T �

Ax1 . . . AxN
�

�

≥ 0,

where the matrix F(t, c1) is as follows,

F(t, c1) =





























2c1 0 0 0 . . . 0 0 . . . 0 t − c1

0 α2 β2 0 . . . 0 0 . . . 0 −t
0 β2 α3 β3 . . . 0 0 . . . 0 t
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . αk βk . . . 0 t
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0 . . . αN−1 βN−1

t − c1 −t t t . . . t t . . . βN−1 αN





























,

and

αk =











6c1 − 5t, k = 2

2
�

2k2 − 3k+ 1
�

c1 − (4k− 1) t, 3≤ k ≤ N − 1,
�

2N2 − 6N + 4
�

c1 − 2
�

N + 1
(N−2)2 −

2
N+1 − 3

�

t, k = N ,

βk =

(

2kt −
�

2k2 − k− 1
�

c1, 2≤ k ≤ N − 2,

(N + 1
2−N − 1)t − (2N2 − 6N + 3)c1, k = N − 1,
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The rest of the proof proceeds analogously to the proof of Theorem 9.6.

The following example shows the tightness of this bound.

Example 9.9. Assume that c1 > 0, N ≥ 4 and t ∈ (0, c1] are given, and f , g : R→ R
are defined by,

f (x) = 1
2 max

�

−N+1
N−1 x , x

	

+ c1
2 x2,

g(z) = 1
2 max

¦

1
t(N−1) − z, N−3

N−1

�

z − 1
t(N−1)

�©

.

Consider the optimization problem

min
(x ,z)∈R×R

f (x) + g(z),

s. t. Ax + Bz = 0.

where A = B = I . The point (x⋆, z⋆) = (0,0) with Lagrangian multiplier λ⋆ = 1
2

is an optimal solution. After performing N iterations of Algorithm 9.1 with setting
λ0 = −1

2 and z0 = 0, we have

xk = 0, k ∈ {1, . . . , N},

zk =

(

1
t(N−1) , k ∈ {1, . . . , N − 1},

0, k = N ,

λk =

(

2k+1−N
2(N−1) , k ∈ {1, . . . , N − 1},
1
2 , k = N .

It can be seen that


AT B
�

zN − zN−1
�

= 1
(N−1)t =

q

∥λ0−λ⋆∥2+t2∥z0−z⋆∥2B
(N−1)t , which shows

that the bound is tight.

Theorem 9.4 and 9.6 address the case that f is strongly convex relative to ∥.∥A
and g is convex. Based on numerical results by solving performance estimation
problems including (9.13) we conjecture, under the assumptions of Theorem 9.4,
that if g is c2-strongly convex relative to ∥.∥B, Algorithm 9.1 enjoys the following
convergence rates

D(λ⋆)− D(λN )≤
∥λ0 −λ⋆∥2 + t2∥z0 − z⋆∥2B

4N t + 2c1c2
c1+c2

,



AxN + BzN − b


≤

q

∥λ0 −λ⋆∥2 + t2∥z0 − z⋆∥2B
N t + c1c2

c1+c2

.
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We have verified these conjectures numerically for many specific values of the
parameters. Nevertheless, we could not manage to guess a closed-form formula
for the residual dual in this case.

9.4 Linear convergence of ADMM

In this section we study the linear convergence of ADMM. The linear conver-
gence of ADMM has been addressed by some authors and some conditions for lin-
ear convergence have been proposed, see [DY16, LYZZ18, Han22, HSZ18, HL17,
NLR+15, YZZ20]. Two common types of assumptions employed for proving the
linear convergence of ADMM are error bound property and L-smoothness. To the
best knowledge of authors, most scholars investigated the linear convergence of
the sequence {(xk, zk,λk)} to a saddle point and there is no result in terms of
dual objective value for ADMM. In line with the previous section, we study the
linear convergence in terms of dual objective value and we derive some formulas
for linear convergence rate by using performance estimation. It is noteworthy to
mention that the term "Q-linear convergence" is also employed to describe the
linear convergence in the literature.

As mentioned earlier, the error bound property is used by scholars for estab-
lishing the linear convergence; see e.g. [LYZZ18, HSZ18, HL17, PVZ21, YZZ20].
Let

Da(λ) :=min f (x) + g(z) + 〈λ, Ax + Bz − b〉+ a
2∥Ax + Bz − b∥2, (9.27)

where stands for augmented dual objective for the given a > 0 and Λ⋆ denotes
the optimal solution set of the dual problem. Note that the function Da is an 1

a -
smooth function on its domain without assuming strong convexity; see [HL17,
Lemma 2.2].

Definition 9.10. The function Da is said to satisfy the error bound property if we
have

dΛ⋆(λ)≤ τ∥∇Da(λ)∥, λ ∈ Rr , (9.28)

for some τ > 0.

Hong et al. [HL17] established the linear convergence by employing the error
bound property (9.28).



644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti644021-L-bw-Abbaszadehpeivasti
Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024Processed on: 6-6-2024 PDF page: 192PDF page: 192PDF page: 192PDF page: 192

176

Recently, some scholars established the linear convergence of gradient meth-
ods for L-smooth convex functions by replacing strong convexity with some mild
conditions, see [NNG19, AdKZ23a, BNPS17] and references therein. Inspired by
these results, we prove the linear convergence of ADMM by using the so-called
PŁ inequality. It is worth noting that we employ the nonsmooth version of the PŁ
inequality introduced in [BDL07]. Concerning differentiability of dual objective,
by (9.5), we have

b− A∂ f ∗(−ATλ)− B∂ g∗(−BTλ) ⊆ ∂ (−D(λ)) . (9.29)

Note that the inclusion in (9.29) holds as an equality under some mild conditions,
see e.g. [Bec17, Chapter 3].

Definition 9.11. The function D is said to satisfy the PŁ inequality if there exists
an Lp > 0 such that for any λ ∈ Rr we have

D(λ⋆)− D(λ)≤ 1
2Lp
∥ξ∥2, ξ ∈ ∂ (−D(λ)) . (9.30)

Note that if f and g are strongly convex, then −D is an L-smooth convex
function with L ≤ λmax(AT A)

µ1
+ λmax(BT B)

µ2
. In this setting, we have Lp ≤

λmax(AT A)
µ1

+
λmax(BT B)
µ2

. This follows from the duality between smoothness and strong convexity
and

∥∇D(λ)−∇D(ν)∥ ≤


∇ f ∗(−ATλ)−∇ f ∗(−ATν)




A+


∇g∗(−BTλ)−∇g∗(−BTν)




B

≤ 1
µ1



ATλ− ATν




A+
1
µ2



BTλ− BTν




B ≤
�

λmax(AT A)
µ1

+ λmax(BT B)
µ2

�

∥λ− ν∥ .

In the next proposition, we show that definitions (9.28) and (9.30) are equiv-
alent.

Proposition 9.12. Let La =
1
a denote the Lipschitz constant of ∇Da, where Da is

given in (9.27). Suppose that (9.29) holds as equality.

i) If Da satisfies the error bound (9.28), then D satisfies the PŁ inequality (9.30)
with Lp =

1
Laτ2 .

ii) If D satisfies the PŁ inequality (9.30), then Da satisfies the error bound (9.28)
with τ=

Lp
1+aLp

.
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Proof. First we prove i). Suppose λ ∈ Rr and ξ ∈ b−A∂ f ∗(−ATλ)−B∂ g∗(−BTλ).
By the identity (9.4), we have ξ = b − Ax̄ − Bz̄ for some ( x̄ , z̄) ∈ argmin f (x) +
g(z) + 〈λ, Ax + Bz − b〉. Due to the smoothness of Da and (9.28), we get

Da(λ⋆)− Da(ν)≤ Laτ
2

2 ∥∇Da(ν)∥2, ν ∈ Rr , (9.31)

where λ⋆ ∈ Λ⋆ with dΛ⋆ = ∥ν−λ⋆∥. Suppose that ν̄= λ− a(Ax̄ + Bz̄ − b). As we
assume strong duality, we have Da(λ⋆) = D(λ⋆). By the definitions of x̄ , ȳ , we get

( x̄ , z̄) ∈ argmin f (x) + g(z) + 〈ν̄, Ax + Bz − b〉+ a
2∥Ax + Bz − b∥2.

By [HL17, Lemma 2.1], we have∇Da(ν̄) = Ax̄+Bz̄− b. This equality with (9.31)
imply

D(λ⋆)− D(λ)≤ Da(λ⋆)− Da(ν̄)≤ Laτ
2

2 ∥Ax̄ + Bz̄ − b∥2,

and the proof of i) is complete.
Now we establish ii). Let λ be in the domain of∇Da. By [HL17, Lemma 2.1], we
have ∇Da(λ) = Ax̄ + Bz̄ − b for some ( x̄ , z̄) ∈ argmin f (x) + g(z) + 〈λ, Ax + Bz −
b〉+ a

2∥Ax + Bz − b∥2, which implies that

0 ∈ ∂ f ( x̄) + AT (λ+ a(Ax̄ + Bz̄ − b)) , 0 ∈ ∂ g(z̄) + BT (λ+ a(Ax̄ + Bz̄ − b)) .
(9.32)

Supposing ν = λ+ a(Ax̄ + Bz̄ − b). By (9.32), one can infer that D(ν) = f ( x̄) +
g(z̄)+〈ν, Ax̄+Bz̄−b〉. In addition, (9.4) implies that b−Ax̄−Bz̄ ∈ b−A∂ f ∗(−ATν)−
B∂ g∗(−BTν). By the PŁ inequality, we have

1
2Lp
∥Ax̄ + Bz̄ − b∥2 ≥ D(λ⋆)− D(ν) = Da(λ⋆)− Da(λ)− a

2 ∥Ax̄ + Bz̄ − b∥2 ,

where the equality follows from D(ν) = Da(λ) + a
2 ∥Ax̄ + Bz̄ − b∥2 and Da(λ⋆) =

D(λ⋆). Hence,
Da(λ⋆)− Da(λ)≤

�

1
2Lp
+ a

2

�

∥∇Da(λ)∥2.

This inequality says that Da satisfies the PŁ inequality. On the other hand, the PŁ
inequality implies the error bound with the same constant, see [BNPS17], and the
proof is complete.

In what follows, we employ performance estimation to derive a linear con-
vergence rate for ADMM in terms of dual objective when the PŁ inequality holds.
To this end, we compare the value of dual problem in two consecutive iterations,
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that is, D(λ⋆)−D(λ2)
D(λ⋆)−D(λ1) . The following optimization problem gives the worst-case con-

vergence rate,

max D(λ⋆)−D(λ2)
D(λ⋆)−D(λ1)

s. t. {x2, z2,λ2} is generated by Algorithm 9.1 w.r.t. f , g, A, B, b,λ1, z1 (9.33)

(x⋆, z⋆) is an optimal solution and its Lagrangian multipliers is λ⋆

D satisfies the PŁ inequality

f ∈ FA
c1,∞(R

n), g ∈ FB
c2,∞(R

n)

λ1 ∈ Rr , z1 ∈ Rm, A∈ Rr×n, B ∈ Rr×m, b ∈ Rr .

Analogous to our discussion in Section 9.2, we may assume without loss of

generality b = 0, λ1 =
�

A B
�

�

x†

z†

�

and λ⋆ =
�

A B
�

�

x̄
z̄

�

for some x̄ , x†, z̄, z†.

In addition, we assume that x̂1 ∈ argmin f (x) + 〈λ1, Ax〉 and x̂2 ∈ argmin f (x) +
〈λ2, Ax〉. Hence,

D(λ1) = f ( x̂1)+ g(z1)+〈λ1, Ax̂1+Bz1〉, D(λ2) = f ( x̂2)+ g(z2)+〈λ2, Ax̂2+Bz2〉,

and

− ATλ1 ∈ ∂ f ( x̂1), −BTλ1 ∈ ∂ g(z1), (9.34)

− ATλ2 ∈ ∂ f ( x̂2), −BTλ2 ∈ ∂ g(z2).

Moreover, by (9.34) and (9.29), we get

−Ax̂1 − Bz1 ∈ ∂
�

−D(λ1)
�

, −Ax̂2 − Bz2 ∈ ∂
�

−D(λ2)
�

.

On the other hand, λ2 = λ1 + tAx2 + tBz2. Therefore, by using Theorem 2.40,
problem (9.33) may be relaxed as follows,
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max
f ⋆ + g⋆ − f̂ 2 − g2 − 〈Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2〉

f ⋆ + g⋆ − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉

s. t.
¦

�

x̂1,−AT Ax† − AT Bz†, f̂ 1
�

,
�

x2,−AT Ax† − AT Bz† − tAT Ax2 − tAT Bz1, f 2
�

,
�

x̂2,−AT Ax† − AT Bz† − tAT Ax2 − tAT Bz2, f̂ 2
�

,
�

0,−AT Ax̄ − AT Bz̄, f ⋆
�

©

satisfy interpolation constraints (2.5)
¦

�

z1,−BT Ax† − BT Bz†, g1
�

,
�

z2,−BT Ax† − BT Bz† − tBT Ax2 − tBT Bz2, g2
�

,
�

0,−BT Az̄ − BT Bz̄, g⋆
�

©

satisfy interpolation constraints (2.5)

f ∗ + g∗ − f̂ 1 − g1 −



Ax† + Bz†, Ax̂1 + Bz1
�

≤ 1
2Lp



Ax̂1 + Bz1




2
(9.35)

f ∗ + g∗ − f̂ 2 − g2 −



Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2
�

≤ 1
2Lp



Ax̂2 + Bz2




2

A∈ Rr×n, B ∈ Rr×m.

By deriving an upper bound for the optimal value of problem (9.35) in the next
theorem, we establish the linear convergence of ADMM in the presence of the PŁ
inequality.

Theorem 9.13. Let f ∈ FA
c1,∞(R

n) and g ∈ FB
c2,∞(R

m) with c1, c2 > 0, and let D
satisfies the PŁ inequality with Lp. Suppose that t ≤pc1c2.

(i) If c1 ≥ c2, then

D(λ⋆)− D(λ2)
D(λ⋆)− D(λ1)

≤
2c1c2 − t2

2c1c2 − t2 + Lp t (4c1c2 − c2 t − 2t2)
, (9.36)

in particular, if t =pc1c2,

D(λ⋆)− D(λ2)
D(λ⋆)− D(λ1)

≤
1

1+ Lp

�

2
p

c1c2 − c2

� .

(ii) If c1 < c2, then

D(λ⋆)− D(λ2)
D(λ⋆)− D(λ1)

≤ (9.37)

4c2
2 − 2c2

p
c1c2 − t2

4c2
2 − 2c2

p
c1c2 − t2 + Lp t

�

8c2
2 + 5c2 t − 2

p
c1c2

�

1+ t
c1

�

(2c2 + t)
� .

Proof. The argument is based on weak duality. Indeed, by introducing suitable
Lagrangian multipliers, we establish that the given convergence rates are upper
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bounds for problem (9.35). First, we prove (i). Assume that α denotes the right
hand side of inequality (9.36). As 2c1c2 − t2 > 0 and 4c1c2 − c2 t − 2t2 > 0, we
have 0< α < 1. With some algebra, one can show that

f ⋆ + g⋆ − f̂ 2 − g2 − 〈Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2〉−

α
�

f ⋆ + g⋆ − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
�

+

α
�

f̂ 2 − f̂ 1 + 〈Ax† + Bz†, Ax̂2 − Ax̂1〉 − c1
2



 x̂2 − x̂1




2
A

�

+

α
�

f 2 − f̂ 2 + 〈Ax† + Bz† + tAx2 + tBz2, Ax2 − Ax̂2〉 − c1
2



x2 − x̂2




2
A

�

+

α
�

f̂ 2 − f 2 + 〈Ax† + Bz† + tAx2 + tBz1, Ax̂2 − Ax2〉 − c1
2



 x̂2 − x2




2
A

�

+

α
�

g2 − g1 + 〈Ax† + Bz†, Bz2 − Bz1〉 − c2
2



z2 − z1




2
B

�

+

(1−α)
�

− f ⋆ − g⋆ +



Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2
�

+ f̂ 2 + g2+

1
2Lp



Ax̂2 + Bz2




2 �

= −c1α
2



 x̂1 − x̂2




2
A−

c2α
2





Bz1 − Bz2 + t
c2

Ax2 − t
c2

Ax̂2






2
−

α(c1 −
t2

2c2
)




Ax2 + tc2
2c1c2−t2 Bz2 − tc2−2c1c2+t2

t2−2c1c2
Ax̂2







2
.

Hence, we get

f ⋆ + g⋆ − f̂ 2 − g2 − 〈Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2〉 ≤

α
�

f ⋆ + g⋆ − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
�

for any feasible point of problem (9.33) and the proof of the first part is complete.
For (ii), we proceed analogously to the proof of (i), but with different Lagrange
multipliers. Let β denote the right hand side of inequality (9.37), i.e.

β =
4c2

2 − 2c2
p

c1c2 − t2

4c2
2 − 2c2

p
c1c2 − t2 + Lp t

�

8c2
2 + 5c2 t − 2

p
c1c2

�

1+ t
c1

�

(2c2 + t)
� .

It is seen that 0< β < 1. By doing some calculations, we have
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f ⋆ + g⋆ − f̂ 2 − g2 − 〈Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2〉−

β
�

f ⋆ + g⋆ − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
�

+

β
�

f̂ 2 − f̂ 1 + 〈Ax† + Bz†, Ax̂2 − Ax̂1〉 − c1
2



 x̂2 − x̂1




2
A

�

+
Ç

c2
c1
β
�

f 2 − f̂ 2 + 〈Ax† + Bz† + tAx2 + tBz2, Ax2 − Ax̂2〉 − c1
2



x2 − x̂2




2
A

�

+
Ç

c2
c1
β
�

f̂ 2 − f 2 + 〈Ax† + Bz† + tAx2 + tBz1, Ax̂2 − Ax2〉 − c1
2



 x̂2 − x2




2
A

�

+
Ç

c2
c1
β
�

g2 − g1 + 〈Ax† + Bz†, Bz2 − Bz1〉 − c2
2



z2 − z1




2
B

�

+
�Ç

c2
c1
− 1

�

β

�

g1 − g2 + 〈Ax† + Bz† + tAx2 + tBz2, Bz1 − Bz2〉−

c2
2



z1 − z2




2
B

�

+ (1− β)
�

− f ⋆ − g⋆ +



Ax† + Bz† + tAx2 + tBz2, Ax̂2 + Bz2
�

+

f̂ 2 + g2 + 1
2Lp



Ax̂2 + Bz2




2 �

= − c1β
2



 x̂1 − x̂2




2
A−

�
p

c1c2β
�









Ax2 −
�

1−
t

2
p

c1c2

�

Ax̂2 +
t

2
p

c1c2
Bz1









2

−

�

β − 1
2Lp

+ β t

�

1−
t

4
p

c1c2

��







Ax̂2 −

�

β Lp

�

−2c2
p

c1c2 + 4c2
2 − t2

�

−β Lp t2 + 2
p

c1c2(2β Lp t + β − 1)

�
1
2

Bz1+

�

2
�

2β c2 Lp (t + c2) +
p

c1c2

�

β − β Lpc2 − 1
��

−β Lp t2 + 2
p

c1c2(2β Lp t + β − 1)

�
1
2

Bz2









2

.

The rest of the proof is similar to that of the former case.

We computed the bounds in Theorem 9.13 by selecting suitable Lagrangian
multipliers and solving the semidefinite formulation of problem (9.35) by hand.
The semidefinite formulation is formed analogously to problem (9.14). Note that
the optimal value of problem (9.35) may be smaller than the bounds introduced
in Theorem 9.13. Indeed, our aim was to provide a concrete mathematical proof
for the linear convergence rate. However, the linear convergence rate factor is not
necessarily tight. Needless to say that the optimal value of problem (9.35) also
does not necessarily give the tight convergence factor as it is just a relaxation of
problem (9.33).

Recently the authors showed that the PŁ inequality is necessary and sufficient
conditions for the linear convergence of the gradient method with constant step
lengths for L-smooth function; see[AdKZ23a, Theorem 5]. In what follows, we
establish that the PŁ inequality is a necessary condition for the linear convergence
of ADMM. Firstly, we present a lemma that is very useful for our proof.
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Lemma 9.14. Let f ∈ FA
c1,∞(R

n) and g ∈ FB
c2,∞(R

m). Consider Algorithm 9.1. If
( x̂1, z1) ∈ argmin f (x) + g(z) + 〈λ1, Ax + Bz − b〉, then

〈Ax̂1 + Bz1 − b, Ax2 + Bz2 − b〉 ≤


Ax̂1 + Bz1 − b




2
. (9.38)

Proof. Without loss of generality we assume that c1 = c2 = 0. By optimality
conditions, we have

f ( x̂1)− 〈λ1, Ax2 − Ax̂1〉 ≤ f (x2), g(z1)− 〈λ1, Bz2 − Bz1〉 ≤ g(z2),

f (x2)− 〈λ1 + t(Ax2 + Bz1 − b), Ax̂1 − Ax2〉 ≤ f ( x̂1),

g(z2)− 〈λ1 + t(Ax2 + Bz2 − b), Bz1 − Bz2〉 ≤ g(z1).

By using these inequities, we get

0≤ 1
t

�

f (x2)− f ( x̂1) +



λ1, Ax2 − Ax̂1
��

+ 1
t

�

g(z2)− g(z1) +



λ1, Bz2 − Bz1
��

+
1
t

�

f ( x̂1)− f (x2) +



λ1 + t(Ax2 + Bz1 − b), Ax̂1 − Ax2
��

+
1
t

�

g(z1)− g(z2) +



λ1 + t(Ax2 + Bz2 − b), Bz1 − Bz2
��

=


Ax̂1 + Bz1 − b




2 −



Ax̂1 + Bz1 − b, Ax2 + Bz2 − b
�

− 3
4



B
�

z1 − z2
�



2−


A
�

x̂1 − x2
�

+ 1
2 B
�

z1 − z2
�



2
.

Hence, we have
〈Ax̂1 + Bz1 − b, Ax2 + Bz2 − b〉

∥Ax̂1 + Bz1 − b∥2
≤ 1,

which completes the proof.

The next theorem establishes that the PŁ inequality is a necessary condition
for the linear convergence of ADMM.

Theorem 9.15. Let f ∈ FA
c1,∞(R

n) and g ∈ FB
c2,∞(R

m). If Algorithm 9.1 is linearly
convergent with respect to the dual objective value, then D satisfies the PŁ inequality.

Proof. Consider λ1 ∈ Rr and ξ ∈ b − A∂ f ∗(−ATλ1) − B∂ g∗(−BTλ1). Hence,
ξ= b−Ax̂1−Bz1 for some ( x̂1, z1) ∈ argmin f (x)+ g(z)+〈λ, Ax+Bz− b〉. If one
sets z0 = z1 and λ0 = λ1 − t(Ax̂1 + Bz1 − b) in Algorithm 9.1, the algorithm may
generate λ1. As Algorithm 9.1 is linearly convergent, there exist γ ∈ [0, 1) with

D(λ⋆)− D(λ2)≤ γ
�

D(λ⋆)− D(λ1)
�

.

So, we have

(1− γ)
�

D(λ⋆)− D(λ1)
�

≤ D(λ2)− D(λ1)≤



Ax̂1 + Bz1 − b,λ2 −λ1
�

,
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where the last inequality follows from the concavity of the function D. Since
λ2 −λ1 = t(Ax2 + Bz2 − b), Lemma 9.14 implies that

D(λ⋆)− D(λ1)≤ t
1−γ∥ξ∥

2,

so D satisfies the PŁ inequality.

Another assumption used in the literature for establishing linear convergence
is L-smoothness; see for example [NLR+15, DY16, GB16, DY17]. Deng et al.
[DY16] show that the sequence {(xk, zk,λk)} is convergent linearly to a saddle
point under Scenario 1 and 2 given in Table 9.1.

Table 9.1: Scenarios leading to linear convergence rates

Scenario Strong convexity Lipschitz continuity Full row rank
1 f , g ∇ f A
2 f , g ∇ f ,∇g -
3 f ∇ f ,∇g BT

It is worth mentioning that Scenario 1 or Scenario 2 implies strong convex-
ity of the dual objective function and therefore the PŁ inequality is implied, see
[AdKZ23a]. Hence, Theorem 9.13 implies the linear convergence in terms of dual
value under Scenario 1 or Scenario 2. Deng et al. [DY16] studied the linear con-
vergence under Scenario 3, but they just proved the linear convergence of the
sequence {(xk, Bzk,λk)}. In the next section, we investigate the R-linear conver-
gence without assuming L-smoothness of f . Indeed, we establish the R-linear
convergence when f is strongly convex, g is L-smooth and B has full row rank.

Note that the PŁ inequality does not imply necessarily Scenario 1 or Scenario
2. Indeed, consider the following optimization problem,

min f (x) + g(z),

s. t. x + z = 0,

x , z ∈ Rn,

where f (x) = 1
2∥x∥

2 + ∥x∥1 and g(z) = 1
2∥z∥

2 + ∥z∥1. With some algebra, one
may show that D(λ) =

∑n
i=1 h(λi) with

h(s) =











−(s− 1)2, s > 1

0, |s| ≤ 1

−(s+ 1)2, s < −1.
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Hence, the PŁ inequality holds for Lp =
1
2 while neither f nor g is L-smooth.

As mentioned earlier the performance estimation problem including the PŁ
inequality at finite set of points is a relaxation for computing the worst-case con-
vergence rate. Contrary to Theorem 9.13, we could not manage to prove the linear
convergence of primal and dual residuals under the assumptions of Theorem 9.13
by employing performance estimation.

9.5 R-linear convergence of ADMM

This section focuses on examining the linear convergence rate for ADMM from
a weaker convergence rate perspective than Q-linear which is already studied in
Section 9.4. This concept is known as R-linear convergence where R stands for
root [NW06]. Recall that ADMM enjoys R-linear convergence in terms of dual
objective value if there exists sequence {sk} ⊆ R+ such that

D(λ⋆)− D(λN )≤ sk,

and sk tends Q-linearly to zero. It is easily seen that the linear convergence im-
plies R-linear convergence. For an extensive discussion of convergence rates see
[NW06, Section A.2] or [BGLS06, Section 1.5] and Section 1.4.

We investigate the R-linear convergence under the following scenarios:

• (S1): f ∈ FA
c1,∞(R

n) is L-smooth with c1 > 0 and A has full row rank;

• (S2): f ∈ FA
c1,∞(R

n) with c1 > 0, g is L-smooth and B has full row rank.

Under these scenarios, we could not manage to find a value of q within the
range [0, 1) that satisfies the inequality:

D(λ⋆)− D(λN+1)≤ q
�

D(λ⋆)− D(λN )
�

.

As a result, we turn our attention towards studying the R-linear convergence.
Our technique for proving the R-linear convergence is based on establishing

the linear convergence of the sequence {V k} given by

V k = ∥λk −λ⋆∥2 + t2


zk − z⋆




2
B . (9.39)

Note that V k is called Lyapunov function for ADMM and it decreases in each it-
eration; see [BPC+11]. It is worth noting Q-linear and R-linear convergence of
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ADMM have been studied under similar scenarios for some performance mea-
sures, see e.g. [DY17, GB16, NLR+15]. However, to the best of knowledge, no
existing results in the literature address the dual objective and V k under Scenario
(S1) and (S2).

First we consider the case that f is L-smooth and c1-strongly convex relative
to A. The following proposition establishes the linear convergence of {V k}.

Proposition 9.16. Let f ∈ FA
c1,∞(R

n) be L-smooth with c1 > 0, g ∈ F0,∞(Rm)

and let A has full row rank. If t <
r

c1 L
λmin(AAT ) , then

V k+1 ≤
�

1− 2c1 t
c1d+2c1 t+t2

�

V k, (9.40)

where d = L
λmin(AAT ) .

Proof. We may assume without loss of generality that x⋆, z⋆ and b are zero; see
our discussion in Section 9.2. By optimality conditions, we have

∇ f (xk+1) = −AT
�

λk + tAxk+1 + tBzk
�

, ηk = −BTλk+1,

∇ f (x⋆) = −ATλ⋆, η⋆ = −BTλ⋆,

for some ηk ∈ ∂ g(zk+1) and η⋆ ∈ ∂ g(z⋆). Let α = 2t
c2
1 d2+2c1d t2−4c2

1 t2+t4 . By Theo-

rem 2.5, we get

α
�

t2 + c1d
�2 �

f (x k+1)− f ⋆ +



λ⋆, Ax k+1
�

− 1
2L



AT
�

λk + tAx k+1 + tBzk −λ⋆
�



2�

+

2αt2
�

c1d + t2
�

�

f ⋆ − f (x k+1)− c1
2



x k+1




2

A−



λk + tAx k+1 + tBzk, Ax k+1
�

�

+

2t
�

g(zk+1)− g⋆ +



λ⋆, Bzk+1
��

+ 2t
�

g⋆ − g(zk+1)−



λk+1, Bzk+1
��

+

α
�

c2
1 d2 − t4

�

�

f ⋆ − f (x k+1)−



λk + tAx k+1 + tBzk, Ax k+1
�

−

1
2L



AT
�

λk + tAx k+1 + tBzk −λ⋆
�



2
�

≥ 0.

As ∥ATλ∥2 ≥ L
d ∥λ∥

2 and λk+1 = λk + tAxk+1 + tBzk+1, we obtain the following
inequality after performing some algebraic manipulations

�

1− 2c t
cd+2c t+t2

�

�


λk −λ⋆




2
+ t2



Bzk




2
�

−
�


λk+1 −λ⋆




2
+ t2



Bzk+1




2
�

−

2αc2
1 t




λk −λ⋆ + t2+2c1 t+c1d
2c1

Ax k+1 + t2+c1d
2c1

Bzk






2
≥ 0.

The above inequality implies that

V k+1 ≤
�

1− 2c1 t
c1d+2c1 t+t2

�

V k,

and the proof is complete.
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Note that one can improve bound (9.40) under the assumptions of Proposition
9.16 and the µ-strong convexity of f by employing the following known inequality

1

2(1−
µ
L )

�

1
L ∥∇ f (x)−∇ f (y)∥2 +µ∥x − y∥2 − 2µ

L 〈∇ f (x)−∇ f (y), x − y〉
�

≤ f (y)− f (x)− 〈∇ f (x), y − x〉 .

Indeed, we employed the given inequality but we could not manage to obtain
a closed form formula for the convergence rate. The next theorem establishes
the R-linear convergence of ADMM in terms of dual objective value under the
assumptions of Proposition 9.16.

Theorem 9.17. Let N ≥ 4 and let A has full row rank. Suppose that f ∈ FA
c1,∞(R

n)

is L-smooth with c1 > 0 and g ∈ F0,∞(Rm). If t <min{c1,
r

c1 L
λmin(AAT )}, then

D(λ⋆)− D(λN )≤ ρ
�

1− 2c1 t
c1d+2c1 t+t2

�N
,

where d = L
λmin(AAT ) and ρ = V 0

16t

�

1− 2c1 t
c1d+2c1 t+t2

�−4
.

Proof. By Theorem 9.4 and Proposition 9.16, one can infer the following inequal-
ities,

D(λ⋆)− D(λN )≤ V N−4

16t

≤ V 0

16t

�

1− 2c1 t
c1d+2c1 t+t2

�N−4
,

which shows the desired inequality.

In the sequel, we investigate the R-linear convergence under the hypotheses
of scenario (S2). The next proposition shows the linear convergence of {V k}.

Proposition 9.18. Let f ∈ FA
c1,∞(R

n) with c1 > 0 and let g ∈ F0,∞(Rm) be L-

smooth. Suppose that B has full row rank and k ≥ 1. If t ≤ min{ c1
2 , L

2λmin(BBT )},
then

V k+1 ≤
�

L
L+tλmin(BBT )

�2
V k. (9.41)

Proof. Analogous to the proof of Proposition 9.16, we assume that x⋆ = 0, z⋆ = 0
and b = 0. Due to the optimality conditions, we have

ξk+1 = −AT
�

λk + tAxk+1 + tBzk
�

, ξ⋆ = −ATλ⋆,

∇g(zk) = −BTλk, ∇g(zk+1) = −BTλk+1, ∇g(z⋆) = −BTλ⋆,
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for some ξk+1 ∈ ∂ f (xk+1) and ξ⋆ ∈ ∂ f (x⋆). Suppose that d = L
λmin(BBT ) and

α= 2d t
d+t . By Theorem 2.5, we obtain

α
�

d2 + t2
�

d2 − t2

�

f ⋆ − f (x k+1)−



λk + tAx k+1 + tBzk, Ax k+1
�

− c1
2



x k+1




2
A

�

+

α
�

d2 + t2
�

d2 − t2

�

f (x k+1)− f (x⋆) +



λ⋆, Ax k+1
�

− c1
2



x k+1




2
A

�

+

α
�

g(zk+1)− g⋆ +



λ⋆, Bzk+1
�

− 1
2L



BT
�

λ⋆ −λk+1
�



2�

+

α
�

g⋆ − g(zk+1)−



λk+1, Bzk+1
�

− 1
2L



BT
�

λ⋆ −λk+1
�



2�

+

α
�

g(zk)− g(zk+1) +



λk+1, Bzk − Bzk+1
�

− 1
2L



BT
�

λk+1 −λk
�



2�

+

α
�

g(zk+1)− g(zk) +



λk, Bzk+1 − Bzk
�

− 1
2L



BT
�

λk+1 −λk
�



2�≥ 0.

By employing ∥BTλ∥2 ≥ L
d ∥λ∥

2 and λk+1 = λk+ tAxk+1+ tBzk+1, the aforemen-
tioned inequality can be expressed as follows after some algebraic manipulation,

−α2

4









�

2t2

d2 − d t

�

Ax k+1 + Bzk −
�

1+ t
d

�

Bzk+1









2

−
2t
�

d2 + t2
� �

cd2 − d t(c + t)− t3
�

(d2 − t2)2



Ax k+1




2 − α2

4d2









λk −λ⋆ +
�

2d2 − (d − t)2

d − t

�

Ax k+1 + (d + t)Bzk+1









2

+
�

d
d+t

�2 �
λk −λ⋆





2
+ t2



Bzk




2�−
�


λk+1 −λ⋆




2
+ t2



Bzk+1




2�≥ 0.

Hence, we have
V k+1 ≤

� d
d+t

�2
V k,

and the proof is complete.

As the sequence {V k} is not increasing [BPC+11, Convergence Proof], we have
V 1 ≤ V 0. Thus, by using Theorem 9.4 and Proposition 9.18, one can infer the
following theorem.

Theorem 9.19. Let f ∈ FA
c1,∞(R

n) with c1 > 0 and let g ∈ F0,∞(Rm) be L-smooth.

Assume that N ≥ 5 and B has full row rank. If t <min{ c1
2 , L

2λmin(BBT )}, then

D(λ⋆)− D(λN )≤ ρ
�

L
L+tλmin(BBT )

�2N
, (9.42)

where ρ = V 0

16t

�

L
L+tλmin(BBT )

�−10
.

In the same line, one can infer the R-linear convergence in terms of primal and
dual residuals under the assumptions of Theorem 9.17 and Theorem 9.19. In this
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section, we proved the linear convergence of {V k} under two scenarios (S1) and
(S2). By (9.5), it is readily seen that function −D is strongly convex under the
hypotheses of both scenarios (S1) and (S2). Therefore, both scenarios imply the
PŁ inequality. One may wonder that if the PŁ inequality and the strong convexity
of f imply the linear of {V k}. By using performance estimation, we could not
establish such an implication.

As mentioned above, function−D under both scenarios are µ-strongly convex.
Hence, the optimal solution set of the dual problem is unique and one can infer
the R-linear convergence of λN by using Theorem 9.17 (Theorem 9.19) and the
known inequality,

µ
2



λN −λ⋆




2 ≤ D(λ⋆)− D(λN ).

9.6 Concluding remarks

In this chapter we developed a performance estimation framework to handle dual-
based methods. Thanks to this framework, we could obtain some tight conver-
gence rates for ADMM. This framework may be exploited for the analysis of other
variants of ADMM in the ergodic and non-ergodic sense. Moreover, similarly to
[KF16], one can apply this framework for introducing and analyzing new accel-
erated ADMM variants. Moreover, most results hold for any arbitrary positive
step length, t, but we managed to get closed form formulas for some interval of
positive numbers.

It is worth mentioning that FA
c1,∞ = FτA

τ−2c1,∞. However, strong convexity
relative to ∥.∥A is assumed throughout the chapter when A is the first block of
the constraint matrix, which is fixed for a given problem. If one considers strong
convexity relative to ∥.∥τA, they need to modify constraints accordingly. In what
follows, we investigate two possible cases, and show that these transformations
have no influence.

Case 1. Consider the following problem

min f (x) + g(z)

s. t. τA(τ−1 x) + Bz = b.

To be consistent with problem (1), we define new variable y = τ−1 x , and the
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problem is formulated as

min h(y) + g(z)

s. t. τAy + Bz = b,

where h is given by h(y) = f (τy). It is seen that f is c-strongly convex relative
to ∥.∥A if and only if h is c-strongly convex relative to ∥.∥τA. In addition, we have
the same initial condition as (τ−1 x⋆, z⋆,λ⋆) is a saddle point for the new problem.
Hence, we get same results for both formulations.

Case 2. Consider the following case,

min f (x) + g(z)

s. t. τAx +τBz = τb.

For this problem (x⋆, z⋆,τ−1λ⋆) is a saddle point and f ∈ FτA
τ−2c1,∞. Let {(xk, zk,λk)}

be the generated points via ADMM for solving Problem (9.1) with initial point
(z0,λ0) and step length t. It is seen that ADMM can generate {(xk, zk,τ−1λk)}
for solving the new problem with initial point (z0,τ−1λ0) and step length τ−2 t.
In this case, we also get the same results as

1
t ∥λ

0 −λ⋆∥2 + t


z0 − z⋆




2
B =

1
tτ−2 ∥τ−1λ0 −τ−1λ⋆∥2 + tτ−2



z0 − z⋆




2
τB .
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Not what we have, but what we enjoy, constitutes our abundance.

Epicurus

10
Conclusion and outlook

The primary focus of this thesis has been the complexity analysis of first-order
methods. This line of investigation has far-reaching implications for researchers
and practitioners across various fields, particularly in the realm of machine learn-
ing, as first-order methods are used extensively to solve the optimization problems
that arise in real-world applications. The use of performance estimation methods
has allowed us to study the worst-case behavior of some first-order methods.

Using this methodology, we started with one of the most famous first-order
methods, the gradient descent method with fixed step length. We studied the
complexity of this algorithm over L-smooth functions and by means of Proposition
4.4 showed that the presented bound is in fact tight for some step lengths. We
show that in this case the bound is tight for step-lengths in the interval (0, 1

L ]. It
is known that the gradient descent method is convergent if the step-length lies in
(0, 2

L ).

Open problem 10.1. Consider the class of L-smooth functions. Given the norm of
the gradient as the stopping criterion for the gradient descent method, what is the
tight bound when all step-lengths are within the interval

� 1
L , 2

L

�

?

We continued to study the gradient method by providing necessary and suf-
ficient conditions so that the algorithm enjoys linear convergence, namely if the
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function class under the study satisfies PŁ inequality; see Theorem 5.8. As the
given bound under the PŁ inequality is not tight, an important question to be
answered is the following.

Open problem 10.2. When may a function that satisfies the PŁ inequality at a given,
finite set of points be extended to a function that satisfies the same PŁ inequality on
some open set containing these points?

We also studied the relation between this class of functions with other class of
functions; see Section 5.3.

We continued by studying the coordinate descent method, a variant of the
gradient descent method. We showed that the worst-case bounds given in the
literature are not tight for some class of functions. As the bounds we obtained
via SDP are only numerical, see Sections 6.2 and 6.3, it is important to provide
a mathematical proof as well as a closed-form formula for the given bounds. We
also studied worst case behavior of the non-linear Gauss–Seidel method as well
as the related weighed Jacobi method; see Sections 6.3.1 and 6.3.2, respectively.
Another important question might be to find interpolation constraints to find a
better bound for the randomized coordinate descent method. These constraints
not only contribute to refining the bounds for the randomized coordinate method
but also pave the way for effectively addressing other stochastic methods, such
as the widely used stochastic gradient descent method in the machine learning
community, and answers several open questions in this area.

Proceeding with the examination of gradient-based algorithms, we studied
the gradient descent-ascent method which is mainly used to find saddle points of
minimax problems. In this study, we presented a tight convergence rate for one
iteration of the algorithm for some class of functions as well as an optimal step
length based on the given bound; see Section 7.2. Moreover, we studied necessary
and sufficient conditions that the algorithm enjoys linear convergence under those
conditions; see Section 7.3. As it is mentioned, the given bound is tight only for
one iteration, this might be because of the lack of an interpolation constraint for
minimax problems.

Open problem 10.3. What are the condition(s) that a saddle-point function F(x , y),
with properties provided in Section 7.1, must satisfy for a finite set of given points to
be extended to a function with the same properties on some open set containing these
points? In other words, what is the interpolation constraint for this function class?

In Chapter 8, we delved into the Difference of Convex Functions Algorithm
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(DCA). A large class of functions may be written as the difference of two convex
functions. In our study, we provided some worst-case convergence rate for some
class of functions. We provided the worst-case convergence rate for the case that
at least one of the two convex functions is L-smooth. We showed that the order
of the given bound is tight by providing an example; see Section 8.3.1. Moreover,
we studied the convergence of DCA when both functions are non-smooth. Also,
we studied the relation between DCA and the gradient descent method in Section
8.3.3, and DCA with the proximal gradient method in Section 8.3.4. In addition,
we provided necessary conditions that DCA enjoys linear convergence.

Open problem 10.4. Is the PŁ inequality a sufficient condition for the DCA to have
linear convergence?

The convergence of DCA with regularization also is studied in this chapter. As
a side result of our analysis, we derived a convergence rate for proximal gradient
method. Regarding this algorithm the following important questions arise.

Open problem 10.5. What conditions must a function satisfy in order to belong to
the function class { f | f := f1 − f2, f1 ∈ Fµ1,L1

(Rn) , f2 ∈ Fµ2,L2
(Rn)}, for some

0 ≤ µ1 < L1 and 0 ≤ µ2 < L2? In the words, what is a (easily verifiable) sufficient
condition for f ∈ Fµ1,L1

(Rn)−Fµ2,L2
(Rn)?

Another open problem would be the following.

Open problem 10.6. Assume a function f with its gradient vector is only specified
on a finite set of points in Rn. Under what condition(s) can the function f be decom-
posed as f1 − f2 on some open convex set containing the points, where f1 and f2 are
convex? In other words, what is the interpolation theorem for the class of difference
of two convex functions? In particular, are the usual interpolation conditions for f1
and f2 enough?

In the last chapter of the thesis, we studied convergence rate for the alternat-
ing direction method of multipliers (ADMM). We studied the convergence rate of
the algorithm for different class of functions. We derive new non-ergodic conver-
gence rates for ADMM and showed that the given bound are tight by providing
a worst-case example; see Section 9.3. In a similar vein, we also examined the
conditions that the algorithm enjoys linear convergence under those conditions,
namely PŁ inequality that is shown as necessary and sufficient condition for linear
convergence of the algorithm; see Section 9.4. Moreover, we study the R-linear
convergence of ADMM under two new scenarios; see Section 9.5. It is important
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for future research to study the convergence rate of ADMM for long-step sizes and
find the optimal step-length by the provided bound.

Open problem 10.7. Is ADMM convergent for long step-sizes? If so, what are the
optimal step-sizes for ADMM?

To the best of our knowledge, the accelerated version of ADMM is not studied
very deeply. Most of the researchers just use the same step-length as the step-
length given for the accelerated gradient method.

Open problem 10.8. What is the optimal step-length for the accelerated ADMM?

It is worth mentioning that, as our analysis does not depend on the dimension
of the problem n, the most of our results hold on any Hilbert space equipped with
an appropriate inner-product.

Likewise, to offer a viewpoint for subsequent investigations, besides the pos-
sible research topics that are mentioned earlier in this chapter or referenced in
the final segments of each chapter for the algorithm under the study, additional
areas of study that may hold potential for future exploration. As we derived con-
vergence rate of the proximal gradient method from the convergence rate of the
DCA, studying the relation of the algorithms and deriving convergence rate of al-
gorithms using other algorithms is very interesting research topic. As we studied
the convergence rate of the algorithms with fixed step length for a bounded step
length, it is shown in practice and, in some cases in theory, that the convergence
rate can be improved for considering a periodic long step regime. Therefore, for
algorithms like the descent ascent method it can be very interesting topic as well
as studying accelerated version of this algorithm. Moreover, there are some algo-
rithms that are not studied using performance estimation method or the known
bound is not tight, e.g., the Chambolle-Pock algorithm [CP11], studying their con-
vergence rate also can be interesting. At the end, in Table 10.1, we present a
summary of the main results presented in the thesis.
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Table 10.1: The summary of the main results on the convergence rates presented
in the thesis

Method Function class Analytical Rate of convergence Proven tightness

Gradient descent method
L-smooth Yes (Thm. 4.3) Sub-linear For some cases (Prop. 4.4)
L-smooth satisfying
PŁ inequality

Yes (Thm. 5.4) Linear No

Coordinate descent method
L-smooth No - No
Quadratic No - No

Randomized coordinate
descent method

L-smooth No - No
µ-strongly convex L-smooth No - No
Convex quadratic No - No

Gradient descent-ascent
method

Strongly convex-strongly concave smooth Yes (Thm. 7.2) Linear For some cases (Prop. 7.4)
Convex-concave smooth satisfying
quadratic gradient growth

Yes (Thm. 7.9) Linear No

Difference of convex
algorithm (DCA)

smooth Yes (Thm. 8.6) Sub-linear For some cases (Ex. 8.8)
Nonsmooth Yes (Thm. 8.12) Sub-linear No
Smooth satisfying PŁ inequality Yes (Thm. 8.20) Linear No

ADMM

Strongly convex Yes (Thm. 9.4, 9.6, 9.8) Sub-linear Yes (Ex. 9.5, 9.7, 9.9)
Strongly convex with dual satisfying PŁ Yes (Thm. 9.13) Linear No
One function is smooth and strongly
convex the other one is convex

Yes (Thm. 9.17) R-linear No

One function is strongly convex the other
one is smooth

Yes (Thm. 9.19) R-linear No
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A
Appendices

A.1 Nonnegativity of multipliers in Theorem 7.2

Recall that, in the proof of Theorem 7.2, γ1 is defined by

γ1 =
t
�

t2(2+L2+Lµ)−t(3L+µ)+(Lt−1)
Æ

(Lt+µt−2)2+4t2+2
�

Æ

(Lt+µt−2)2+4t2
.

Since t is nonnegative, we only need to prove that

γ̂1 := 2t2 − 3Lt −µt + (Lt − 1)
Æ

(Lt +µt − 2)2 + 4t2 + L2 t2 + Lµt2 + 2

is nonnegative. We show that the following optimization problem is lower bounded
by zero,

min
L,t,µ

γ̂1

s. t. L ≥ µ,µ≥ 0, t ≥ 0,

where L, t,µ are decision variables. First we consider the case that Lt − 1 ≤ 0.
We have the following optimization problem

min
L,t

�

min
0≤µ≤L

2t2 + L2 t2 + Lµt2 − 3Lt −µt + (Lt − 1)
Æ

(Lt +µt − 2)2 + 4t2 + 2
�

s. t. Lt ≤ 1, L ≥ µ, t ≥ 0. (A.1)
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The function γ̂1 is concave in µ, therefore, we just consider µ= 0 and µ= L.
First we consider the case that µ= 0. By substituting µ= 0 in γ̂1 we have

γ̂1 = 2t2 + (Lt − 1)
�

Lt − 2+
Æ

(Lt − 2)2 + 4t2
�

.

We argue that the above function is nonnegative on the feasible set of problem
(A.1). By a conjugate multiplication of Lt − 2+

p

(Lt − 2)2 + 4t2 one has

γ̂1 = 2t2

�

1−
2(1− Lt)

(2− Lt) +
p

(Lt − 2)2 + 4t2

�

,

since (2 − Lt) +
p

(Lt − 2)2 + 4t2 ≥ 2(2 − Lt) we conclude that
0≤ 2(Lt−1)

(Lt−2)+
p
(Lt−2)2+4t2

≤ 1 which proves γ̂1 is nonnegative.

Now we consider the case that µ= L. By substituting µ= L we have

γ̂1 = 2t2 + 2L2 t2 − 4Lt + 2(Lt − 1)
Æ

(Lt − 1)2 + t2 + 2.

Now we show that 1
2 γ̂1 = t2+(Lt−1)

�

(Lt − 1) +
p

(Lt − 1)2 + t2
�

is nonnegative
on the given set. Note that, again by conjugate multiplication,

1
2
γ̂1 = t2

�

1−
(1− Lt)

(1− Lt) +
p

(Lt − 1)2 + t2

�

,

which always is nonnegative due to the nonnegativity of (1− Lt).
Now we consider the case that t L − 1> 0. We have

γ̂1 =2t2 + L2 t2 + Lµt2 − 3Lt −µt + (Lt − 1)
Æ

(Lt +µt − 2)2 + 4t2 + 2

≥2t2 + L2 t2 + Lµt2 − 3Lt −µt + (Lt − 1)|Lt +µt − 2|+ 2.

Here, we need to consider two sub-cases. Firstly, when 2− Lt −µt ≥ 0, we have

2t2 + L2 t2 + Lµt2 − 3Lt −µt + (Lt − 1)(2− Lt −µt) + 2−= 2t2 ≥ 0.

If Lt +µt − 2≥ 0, we have

2t2 + L2 t2 + Lµt2 − 3Lt −µt + (Lt − 1)(Ltµt − 2) + 2

=(Lt − 2)2 + (L −µ)t + t2 + Lµt2 ≥ 0,

which completes the proof.
To show that γ2 is nonnegative we follow the same procedure. Recall the

definition of γ2

γ2 =
t
�

t2(2+µ2+Lµ)−t(3µ+L)+(1−µt)
Æ

(Lt+µt−2)2+4t2+2
�

Æ

(Lt+µt−2)2+4t2
.
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We define γ̂2 as

γ̂2 = t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt)
q

(Lt +µt − 2)2 + 4t2 + 2.

Due to t ≥ 0, we only need to show that γ̂2 is nonnegative. To this end, we show
that the following optimization problem is lower bounded by zero.

min
L,t,µ

γ̂2 = t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt)
q

(Lt +µt − 2)2 + 4t2 + 2

s. t. L ≥ µ,µ≥ 0, t ≥ 0.

First we consider the case that 1−µt ≥ 0. We have

γ̂2 ≥ t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt) |Lt +µt − 2|+ 2.

We consider two sub-cases. Firstly, Lt +µt − 2≥ 0:

γ̂2 =t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt)
q

(Lt +µt − 2)2 + 4t2 + 2

≥t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt) (Lt +µt − 2) + 2= 2t2 ≥ 0.

Now assume that Lt +µt − 2≤ 0.

γ̂2 =t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt)
q

(Lt +µt − 2)2 + 4t2 + 2

≥t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt) (2− Lt −µt) + 2

=2
�

(µt − 1)2 + (2−µt − Lt) +µLt2 + t2
�

≥ 0.

Now we consider the case that 1−µt ≤ 0.

min
t,µ

�

min
µ≤L≤ 2µ−t

µt

γ̂2 = t2
�

2+µ2 + Lµ
�

− t (3µ+ L) + (1−µt)
q

(Lt +µt − 2)2 + 4t2 + 2

�

s. t. µt ≥ 1,µ≥ 0, t ≥ 0.

Note that γ̂2 is concave with respect to the variable L. Therefore, we should study
the boundaries of L. If we set L = µ we have

γ̂2 =2(t2 +µ2 t2 − 2µt + (1−µt)
q

(µt − 1)2 + t2 + 1)

=2t2 + 2(µt − 1)((µt − 1)−
Æ

(µt − 1)2 + t2).

By conjugate multiplication, we have

γ̂2 =2t2

�

1−
(µt − 1)

µt − 1+
p

(µt − 1)2 + t2

�

≥ 0.

https://s.t.xn--t-lmb/
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By L ≤ 2µ−t
µt one can see that L ≤ 2

t . Setting L = 2
t :

γ̂2 =−µt + 2t2 +µ2 t2 + (1−µt)
Æ

4t2 +µ2 t2

=2t2

�

1−
2(µt − 1)

µt +
p

µ2 t2 + 4t2

�

≥ 0.

This completes the proof.

A.2 Identity used in the proof of Theorem 7.2

The proof of Theorem 7.2 requires the following identity, that may be verified
through direct (symbolic) calculation:



x0 − tG0,0
x





2
+




y0 + tG0,0
y







2
− ᾱ

�


x0




2
+


y0




2�

+ γ1

�

F0,0 − F⋆,0 −



G⋆,0x , x0
�

−

L
2(L−µ)

�

1
L



G0,0
x − G⋆,0x





2
+µ



x0




2 − 2µ
L




G⋆,0x − G0,0
x ,−x0

�

�

�

+ γ2

�

F⋆,0 − F0,0+




G0,0
x , x0

�

− L
2(L−µ)

�

1
L



G⋆,0x − G0,0
x





2
+µ



x0




2 − 2µ
L




G0,0
x − G⋆,0x , x0

�

�

�

+ γ2

�

F0,⋆−

F⋆,⋆ − L
2(L−µ)

�

1
L



G0,⋆
x





2
+µ



x0




2 − 2µ
L




G0,⋆
x , x0

�

�

�

+ γ1

�

F⋆,⋆ − F0,⋆ +



G0,⋆
x , x0

�

−

L
2(L−µ)

�

1
L



G0,⋆
x





2
+µ



x0




2 − 2µ
L




G0,⋆
x , x0

�

�

�

+ γ1

�

F0,⋆ − F0,0 +
¬

G0,⋆
y , y0

¶

− L
2(L−µ)

�

1
L





G0,0
y − G0,⋆

y







2
+µ



y0




2 − 2µ
L

¬

G0,⋆
y − G0,0

y , y0
¶�

�

+ γ2

�

F0,0 − F0,⋆ −
¬

G0,0
y , y0

¶

−

L
2(L−µ)

�

1
L





G0,⋆
y − G0,0

y







2
+µ



y0




2 − 2µ
L

¬

−G0,0
y + G0,⋆

y , y0
¶�

�

+ γ2

�

− F⋆,0 + F⋆,⋆−

L
2(L−µ)

�

1
L





G⋆,0y







2
+µ



y0




2 − 2µ
L

¬

G⋆,0y ,−y0
¶�

�

+ γ1

�

− F⋆,⋆ + F⋆,0 +
¬

G⋆,0y ,−y0
¶

−

L
2(L−µ)

�

1
L





G⋆,0y







2
+µ



y0




2 − 2µ
L

¬

−G⋆,0y , y0
¶�

�

+ γ3

�



x0




2 −




G0,0
y − G⋆,0y







2�

+

γ3

�



x0




2 −




G0,⋆
y







2�

+ γ3

�


y0




2 −


G0,0
x − G0,⋆

x





2�

+ γ3

�


y0




2 −


G⋆,0x





2�

=− ζ1



x0 − ζ2G0,0
x − ζ3(G

0,⋆
x − G⋆,0x )





2 − ζ4



G0,0
x − G0,⋆

x − G⋆,0x





2−

ζ1





y0 + ζ2G0,0
y − ζ3(G

0,⋆
y − G⋆,0y )







2
− ζ4





G0,0
y − G⋆,0y − G0,⋆

y







2
,
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where ζ1,ζ2,ζ3,ζ4 are given by

ζ1 =
1
2 t
�

(L2+µ2)β
L−µ − 2t2(L−µ)

β + (L +µ)(t(L +µ)− 2)
�

,

ζ2 = −
(L2 t−L−µ2 t+µ)β−L2 t(Lt+µt−3)−(L+µ)(µ2 t2−2µt+2t2+2)+µ2 t

2t2(L+µ)2(Lµ+1)−8Lµt(L+µ)+8Lµ ,

ζ3 = −
t(L2+6Lµ+µ2)−2t2(L+µ)(Lµ+1)−(L−µ)β−2(L+µ)

2t2(L+µ)2(Lµ+1)−8Lµt(L+µ)+8Lµ ,

ζ4 =
t(β+Lt−µt)2

4(L−µ)β .

Note that ζ1,ζ4 ≥ 0, as required.

A.3 Proof for positive semidefniteness of the matrix pre-
sented in Theorem 9.6

Lemma A.1. Let N ≥ 4 and t, c1 ∈ R. Let D(t, c1) be N×N symmetric matrix given
in Theorem 9.6. If c1 > 0 is given, then

[0, c1] ⊆ {t : D(t, c1)⪰ 0}.

Proof. The argument proceeds in the same manner as in Lemma 9.2. Due to the
convexity of {t : D(t, c1) ⪰ 0}, is sufficient to establish the positive semidefinite-
ness of D(0, c1) and D(c1, c1). As D(0, c1) is diagonally dominant, it is positive
semidefinite. Next, we proceed to demonstrate the positive definiteness of the
matrix K = D(1,1) by computing its leading principal minors. One can show that
the claim holds for N = 4. So we investigate N ≥ 5. To accomplish this, we
perform the following elementary row operations on matrix D:

i) Add the second row to the third row;

ii) Add the second row to the last row;

iii) Add the third row to the forth row;

iv) For i = 4 : N − 2

• Add i − th row to (i + 1)− th row;

• Add 3−i
2i2−3i−1 times of i − th row to the last row;

v) Add 2N2−8N+9
2N2−7N+4 times of (N − 1)− th row to N − th row.
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By executing these operations, we transform K into an upper triangular matirx J
with diagonal

Jk,k =











2, k = 1

2k2 − 3k− 1, 2≤ k ≤ N − 1

2N2 − 7N + 8− N2

(N−1)2 −
(2N2−8N+9)2

2N2−7N+4 −
∑N−2

i=4
(i−3)2

2i2−3i−1 , k = N .

It is seen all first (N − 1) diagonal elements of J are positive. We show that JN ,N

is also positive. By using inequality (9.15), we get

2N2 − 7N + 8−
N2

(N − 1)2
−
(2N2 − 8N + 9)2

2N2 − 7N + 4
−

N−2
∑

i=4

(i − 3)2

2i2 − 3i − 1
≥

2N2 − 7N + 8− 25
16 − (2N2 − 8N + 9)− N−5

2 − 1+ 2
N−3 ≥

N
2 −

17
16 > 0,

for N ≥ 5, which implies JN ,N > 0. Hence, D(c1, c1)⪰ 0 and the proof is complete.
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Summary

Academic Summary

This thesis presents a comprehensive analysis of the convergence rates and perfor-
mance of iterative optimization algorithms used in machine learning. Focusing on
gradient descent and other first-order methods, the study introduces novel theo-
retical insights on convergence rates of several methods by utilizing Performance
Estimation Problems (PEPs) formulated as semidefinite programming problems.
Key contributions include the establishment of exact worst-case convergence rates
and conditions under which these methods achieve linear convergence. This
work not only deepens the theoretical understanding of several optimization algo-
rithms, but also guides practical applications in machine learning where efficient
data processing is crucial.

Summary for Non-Experts

This thesis investigates how certain mathematical methods, known as iterative
optimization algorithms, where the best option must be chosen among feasible
alternatives. Specifically, it explores how quickly these methods can reach re-
liable conclusions. The study introduces and improves mathematical tools and
theories that help predict the performance of these algorithms, focusing on those
that use a technique called gradient descent. This research is important because it
helps improve the efficiency of algorithms that process vast amounts of data, mak-
ing them faster and more effective in applications like image recognition, voice
recognition, and other AI technologies.
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Academische Samenvatting

Dit proefschrift presenteert een uitgebreide analyse van de convergentiesnelheden
en prestaties van iteratieve optimalisatie-algoritmen die gebruikt worden in ma-
chine learning. De studie richt zich op gradiëntafdaling en andere methoden van
de eerste orde, en introduceert nieuwe theoretische inzichten in de convergen-
tietempo van verschillende methoden door gebruik te maken van prestatieschat-
tingsproblemen (PSP’s), geformuleerd als semidefiniete optimalisatieproblemen.
Belangrijke bijdragen omvatten het vaststellen van exacte convergentietempo’s
in het slechtste geval en de omstandigheden waaronder deze methoden lineaire
convergentie bereiken. Dit werk verdiept niet alleen het theoretische begrip van
verschillende optimalisatie-algoritmen, maar faciliteert ook praktische toepassin-
gen in machine learning waarbij efficiënte dataverwerking cruciaal is.

Samenvatting voor Niet-Experts

Dit proefschrift onderzoekt bepaalde wiskundige methoden, bekend als iteratieve
optimalisatie-algoritmen, die zich bezighouden met het kiezen van de beste op-
tie uit haalbare alternatieven. Het onderzoekt wijst hoe snel deze methoden
betrouwbare conclusies kunnen bereiken. De studie introduceert en verbetert
wiskundige hulpmiddelen en theorieën die de prestaties van deze algoritmen
helpen voorspellen, met een nadruk op technieken zoals gradiëntafdaling. Dit on-
derzoek is belangrijk omdat het de efficiëntie van algoritmen verbetert die grote
hoeveelheden gegevens verwerken, waardoor ze sneller en effectiever worden in
toepassingen zoals beeldherkenning, spraakherkenning en andere AI-technologieën.
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Q-convergence, 4
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R-convergence, 4
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Łojasiewicz inequality, 72, 125
Łojasiewicz exponent, 125

Affine hull, 14
Alternating direction method of

multipliers, 156

Biconjugate, 19
Bilinear problem, 116
Black-box first-order methods, 35

Closed function, 16
complementary slackness, 26
Conjugate of function, 18
Convergence, 4
Convex function, 15, 16
Convex hull, 127

Convex interpolation, 28
Convex set, 14
convex-concave saddle point

problem, 104
Coordinate descent methods, 84
Critical point, 129
Cyclic coordinate descent method,

91

DCA, 124
Descent lemma, 21, 60
Difference-of-convex (DC)

optimization problem, 124
Distance function, 15
Dual norm, 16
Dual residual, 159
Dual space, 16
Duality gap, 25

Epigraph, 16
Error bound property, 175
Euclidean space, 14

Fast gradient algorithm, 72
Fenchel’s duality theorem, 20
Fenchel’s inequality, 18
Fermat’s optimality condition, 17
First-order methods, 3
First-order oracle, 34
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Fixed-step iterative methods, 36
Frobenius inner product, 25

Gauss–Seidel method, 95
General subgradient, 24
Gradient descent method with fixed

step-size, 37
Gradient descent-ascent method,

104
Gradient dominated, 63
Gram matrix, 37, 87, 162

Induced norm, 14
Inexact weighted-Jacobi method, 98
Infinite-dimensional optimization

problem, 133
Inner product, 14

Jacobian matrix, 63

Lagrangian dual, 40
Lagrangian multipliers, 179
Linear matrix inequality, 25
Lower semi-continuous function, 16
Lyapunov function, 184

Maximum curvature, 62
Minimum curvature, 30, 62

Nonlinear least squares problem, 63
Nonlinear programming, 2

Oracle, 34

Polyak-Łojasiewicz inequality, 63,
150, 176

Projection, 15
Proper function, 15
Proximal gradient method, 142
Proximal operator, 143

Q-linear convergence, 175
Quadratic function, 89
Quadratic functional growth, 76
Quadratic gradient growth, 74, 118

Randomized coordinate descent
method, 85

Regular subgradient, 24
Regularization term, 147
Relative interior, 15
Relative smoothness, 23
Relative strong convexity, 23
Richardson method, 99

Semidefinite programming, 24, 38,
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Seminorm, 14
Stationary point, 129
Strictly convex, 16
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98
Strictly differentiable, 150
Strictly feasible, 25
Strong duality, 25
Sub-linear, 4
Subdifferential, 17
Subgradient, 16

Toland dual, 130

Undominated D.C. decompositions,
149

Weak duality, 25, 53, 67, 109, 134,
179

Weighted-Jacobi method, 98
Whitney extension theorem, 57
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